Article

Carbon-rich Clusters and Graphite-like Structure Formation during Early Detonation of 2,4,6-Trinitrotoluene (TNT) via Molecular Dynamics Simulation

  • Zhang Yaping ,
  • Yang Zhen ,
  • Li Qikai ,
  • He Yuanhang
Expand
  • a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081;
    b State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083

Online published: 2018-05-21

Abstract

The clusters can be seen in carbon-rich explosives during detonation. However, we can't directly observe the formation of clusters by experimental methods. The thermal decomposition of TNT at various temperatures are studied using ReaxFF/lg molecular dynamics simulations. The ReaxFF/lg force field provides detailed information on the formation of cluster from atomic level, the stability of the clusters and the graphite-like structures. The results show that clusters formed slowly at the initial reaction with increasing the relative molecular mass of a TNT approximately one time. As the reaction proceeding, the mass of clusters increases rapidly, and the molecular weight of max cluster can reach 8000~10000 (amu), accounting over about 18% of the system mass. Analysis of the structure of the clusters reveal that some benzene rings in the clusters were broken, and five-membered rings and the six-membered rings which contain N and O atoms were formed, and the more complex seven-membered rings structure were formed under the 3500 K condition. Through the method of linear expansion and direct cooling, the stability of the clusters was studied:the clusters decomposed rapidly by the method of linear expansion, while the clusters aggregated into larger clusters by the method of direct cooling. Through the analysis of graphite-like structures, we obtain that it is an essential step to first expand and the cool down second by analysis the production process of graphite-like structures. The mass ratio of C atoms in the clusters has been increasing during the reaction process by comparing the ratio of the mass of each atom in the clusters and TNT molecules, while the mass ratio of N atoms and H atoms in the clusters decrease and the mass ratio of O atoms show more complicated during the whole reaction. This study can provide a good basis for the preparation of new nanomaterials for detonation of TNT.

Cite this article

Zhang Yaping , Yang Zhen , Li Qikai , He Yuanhang . Carbon-rich Clusters and Graphite-like Structure Formation during Early Detonation of 2,4,6-Trinitrotoluene (TNT) via Molecular Dynamics Simulation[J]. Acta Chimica Sinica, 2018 , 76(7) : 556 -563 . DOI: 10.6023/A18040153

References

[1] Greiner, N. R.; Phillips, D. S.; Johnson, J. D.; Volk, F. Nature 1988, 333, 440.
[2] Yamada, K.; Sawaoka, A. B. Carbon 1994, 32, 665.
[3] Chen, P.; Huang, F.; Yun, S. Carbon 2003, 41, 2093.
[4] Shaw, M. S.; Johnson, J. D. J. Appl. Phys. 1987, 62, 2080.
[5] Van Thiel, M.; Ree, F. H. J. Appl. Phys. 1987, 62, 1761.
[6] Viecelli, J. A.; Ree, F. H. J. Appl. Phys. 2000, 88, 683.
[7] Zhang, L. Z.; Zybin, S. V.; Van Duin, A. C. T.; Dasgupta, S.; Goddard, W. A. Ⅲ. J. Phys. Chem. A 2009, 113, 10619.
[8] van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. Ⅲ. J. Phys. Chem. A 2001, 105, 9396.
[9] Margherita, C.; Roberto, B.; Marco, P.; Gianni, C.; Vincenzo, S. J. Phys. Chem. B 2010, 114, 9420.
[10] Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.
[11] Wen, Y. S.; Zhang, C. Y.; Xue, X. G.; Long, X. P. Phys. Chem. Chem. Phys. 2015, 17, 12013
[12] Zhang, C. Y.; Wen, Y. S.; Xue, X. G.; Liu, J.; Ma, Y.; He, X. D.; Long, X. P. J. Phys. Chem. C 2016, 120, 25237.
[13] Naomi, R.; Barak, H.; Yehuda, Z.; David, F.; Sergey, V. Z.; Goddard, W. A. Ⅲ. J. Phys. Chem. C 2013, 117, 211043.
[14] Yokan, N.; Kazuro, K. Carbon 1984, 22, 189.
[15] Mironov, E. V.; Petroy, E. A.; Korets, A. Y. Combust., Explos. Shock Waves 2004, 40, 473
[16] Lu, L.; Zhu, Z. P.; Su, D. S.; Wang, D.; Liu, Z. Y.; Robert, S. Carbon 2004, 42, 361.
[17] Liu, L. C.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A. Ⅲ. J. Phys. Chem. A 2011, 115, 11016.
[18] Steve, P. J. Comput. Phys. 1995, 117, 1.
[19] Hasan, M. A.; Sagar, A. P.; van Duin, A. C. T.; Ananth, Y. G. Parallel Computing 2012, 38, 245.
[20] Manaa, M. R.; Reed, E. J.; Laurence, E. F.; Nir, G. J. Am. Chem. Soc. 2009, 131, 5483.
[21] Wen, Y. S.; Xue, X. G.; Long, X. P.; Zhang, C. Y. J. Phys. Chem. A 2016, 120, 3929.
[22] Wen, C.; Sun, D. Y.; Li, X.; Guan, J. Q.; Liu, X. X.; Lin, Y. R.; Tang, S. Y.; Zhou, G.; Lin, J. D.; Jin, Z. H. Acta Physica Sinica 2004, 53, 1260. (文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩, 物理学报, 2004, 53, 1260.)
[23] Yang, Z.; Xue, Y. J.; He, Y. H. Acta Chim. Sinica 2016, 74, 612. (杨镇, 薛一江, 何远航, 化学学报, 2016, 74, 612.)
[24] Liu, H.; Dong, X.; He, Y. H. Acta Phys.-Chim. Sinica 2014, 30, 232. (刘海, 董晓, 何远航, 物理化学学报, 2014, 30, 232.)
[25] Carper, W. R.; Davis, L. P.; Extine, M. W. J. Phys. Chem. 1982, 86, 459.
[26] Kuklja, M. M.; Kunz, A. B. J. Phys. Chem. Solids 2001, 61, 35.
[27] Qin, Y. M.; Lv, X. D.; Ning, J. P.; Zhang, L. C.; Zhao, C. L.; He, P. N.; Bogaerts, A.; Gou, F. J. Mater. Rev. 2009, 23, 257. (秦尤敏, 吕晓丹, 宁建平, 张利纯, 赵成利, 贺平逆, Bogaerts A., 苟富君, 材料导报, 2009, 23, 257.)

Outlines

/