Dielectric Spectroscopy for the Study of the Dynamic Behavior of Polymer Chains
Received date: 2018-04-06
Online published: 2018-05-28
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21574053, 91333103).
Dielectric spectroscopy is a great useful method in investigating polymeric chains dynamic. It can reflect the characteristic structural information of molecules and is of great significance for revealing the nature and laws of the dynamic behavior of polymer chains as well as regulating their condensed structure. In this paper, based on the theory of dielectric spectroscopy, we conclude some kinds of common dielectric parameters and mathematic functions which is used to analyse the dielectric parameters. Therefore, the dielectric parameters of the polymeric chains, such as the dielectric constant, the dielectric relaxation strength, and the characteristic relaxation time of polymeric chains, can be obtained by analysing the relaxation process of the polymeric chains to estimate the scale of relaxation process, the relaxation groups and the cooperation process of side chains. Of course, it is very useful to connect the dielectric parameters with the Arrenius function, the Vogel-Tammann-Fulcher (VFT) and the statistics model to obtain the interface construction, the molecular internal composition, the dynamic behaviors of polymeric chain, and the dependence on environment etc., in order to establish a polymer physics theoretical foundation for the further macromolecule design, development and application for polymer materials.
Key words: dielectric spectroscopy; polymer; dynamic; feature parameters; relaxation
Lei Dong , Lu Dan . Dielectric Spectroscopy for the Study of the Dynamic Behavior of Polymer Chains[J]. Acta Chimica Sinica, 2018 , 76(8) : 605 -616 . DOI: 10.6023/A18040132
[1] Williams, G.; Thomas, D. K. Novocontrol Applications Note.
[2] Schönhals, A. Novocontrol Application Notes.
[3] Mijovic, J.; Fitz, B. D. Application Notes, Novocontrol.
[4] Kremer, F. Non-Cryst. Solids 2002, 305, 1.
[5] Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy, Springer, 2003, pp. 21~30.
[6] Yin, Z.-W. Dielectric Physics, Science Press, Beijing, 2003, pp. 566~567. (殷之文, 电介质物理学, 科学出版社, 北京, 2003, pp. 566~567.)
[7] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1950, 18, 1417.
[8] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1951, 19, 1484.
[9] Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.
[10] Havriliak, S.; Negami, S. Polymer 1967, 8, 161.
[11] Oikawa, S.; Sasaki, A.; Toyota, T. Proceedings of International Conference on Computer Communication and Management, Sydney, Australia, 1998, pp. 75~82.
[12] Qian, B.-G.; Xu, G.-F.; Yu, F.-S. Transition and Relaxation of Polymers, Science Press, Beijing, 1986, p. 103. (钱保功, 许观藩, 于赋生, 高聚物的转变与松驰, 科学出版社, 北京, 1986, p. 103.)
[13] Zhao, K.-S. Dielectric Spectroscopy Methods and Applications, Chemical Industry Press, Beijing, 2008, p. 20. (赵孔双, 介电松弛谱方法及应用, 化学工业出版社, 北京, 2008, p. 20.)
[14] Mijovic, J.; Fitz, B. D. Mater. Sci. 1998, 2, 1531.
[15] Liu, Y.; Li, Y.; Xiong, H. ACS Macro Lett. 2013, 2, 45.
[16] Adachi, K.; Kotaka, T. Prog. Polym. Sci. 1993, 18, 585.
[17] Zimm, B. H. J. Chem. Phys. 1956, 24, 269.
[18] Ngai, K. L.; Plazek, D. J.; Roland, C. M. Phys. Rev. Lett. 2009, 103, 159801.
[19] Sokolov, A. P.; Schweizer, K. S. Phys. Rev. Lett. 1998, 80, 1453.
[20] Schönhals, A.; Kremer, F.; Hofmann, A. Phys. Rev. Lett. 1993, 70, 3459.
[21] Dudowicz, J.; Freed, K. F.; Douglas, J. F. J. Phys. Chem. B 2005, 109, 21285.
[22] Maxwell, A. S.; Monnerie, L.; Ward, I. M. Polymer 1998, 39, 6851.
[23] Starkweather, H. W. Polymer 1991, 32, 2443.
[24] Starkweather, H. W. Macromolecules 1988, 21, 1798.
[25] Starkweather, H. W. Macromolecules 1981, 14, 1277.
[26] Wang, F.-F.; Zhang, P.-H.; Gao, M.-Z. Acta Phys. Sin. 2014, 63, 364. (王飞风, 张沛红, 高铭泽, 物理学报, 2014, 63, 364.)
[27] Rozanski, S. A.; Kremer, F.; Köberle, P. Macromol. Chem. Phys. 1995, 196, 877.
[28] Gondaliya, N.; Kanchan, D. K.; Sharma, P. Polym. Compos. 2012, 33, 2195.
[29] Ribelles, J. L. G.; Duenas, J. M. M.; Pradas, M. M. J. Appl. Polym. Sci. 1989, 11, 45.
[30] Zhang, H.; Hanai, T.; Koizumi, N. Bull. Inst. Chem. Res., Kyoto Univ. 1983, 61, 265.
[31] Adachi, K.; Kotaka, T. Pure Appl. Chem. 1997, 69, 125.
[32] Lou, N.; Wang, Y.; Li, X. Macromolecules 2013, 46, 3160.
[33] Gao, M.; Zhang, P.; Wang, F. IEEE 2014, pp. 234~237.
[34] Lin, S.-J.; Huang, Y.; Xie, D.-R. Acta Phys. Sin. 2016, 65, 296. (林生军, 黄印, 谢东日, 物理学报, 2016, 65, 296.)
[35] Szazdi, L.; Agnes, A.; Pukanszky, B. J. Macromol. Mater. Eng. 2006, 291, 858.
[36] Zhao, K.; Yasuhiro, M.; Asaka, K. J. Membr. Sci. 1991, 64, 163.
[37] Schick, C.; Sukhorukov, D.; Schönhals, A. Macromol. Chem. Phys. 2001, 202, 1398.
[38] Jin, W.-F. Dielectric Physics, Mechanical Industry Press, Beijing, 1997. (金维芳, 电介质物理学, 机械工业出版社, 北京, 1997.)
[39] Kremer, F.; Schönhals, P. D. A. Broadband Dielectric Spectroscopy, Springer, 2003, pp. 350~350.
[40] He, M.-J.; Chen, W.-X.; Dong, X.-X. Polymer Physics, Fudan University Press, Shanghai, 2007. (何曼君, 陈维孝, 董西侠, 高分子物理, 复旦大学出版社, 上海, 2007.).
[41] Alvarez, F.; Alegra, A.; Colmenero, J. Phys. Rev. B:Condens. 1991, 44, 7306.
[42] Liu, F.-Q.; Tang, X.-Y. Polymer Physics, Higher Education Press, Beijing, 2004. (刘凤岐, 汤心颐, 高分子物理, 高等教育出版社, 北京, 2004.)
[43] Elmahdy, M. M.; Chrissopoulou, K.; Afratis, A. Macromolecules 2006, 39, 5170.
[44] Vallerien, S. U.; Kremer, F.; Boeffel, C. Liq. Cryst. 1989, 4, 79.
[45] Li, T.; Huang, L.; Bai, Z. Polymer 2016, 88, 71.
[46] Li, T.; Liu, B.; Zhang, H. Polymer 2016, 103, 299.
[47] Hanai, T. Kolloid Z 1961, 177, 57.
/
〈 |
|
〉 |