All Graphene Lithium Ion Capacitor with High-Energy-Power Density Performance
Received date: 2018-02-27
Online published: 2018-06-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51702103, 51602058), the Natural Science Foundation of Guangdong Province,China (No. 2017A030313081), China Postdoctoral Science Foundation (No. 2017M610527), the Science and Technology Planning Project of Guangdong (No. 2017A010103011), and Open Fund of State Key Laboratory of Electronic Components Reliability Physics and Its Application Technology (No. ZHD201705).
Taking advantage of the extended specific surface area and high conductivity, graphene has been widely subjected to extensive investigations by many research groups. Herein, three-dimensional graphene (3DG) were prepared by a facile and scalable ion-exchange method, which exhibited a porous structure with a specific surface area of 2400 m2/g and pore volume of 2.0 cm3/g. In a typical synthesis, two key procedures played an important role in preparing the novel characteristics of 3DG:First, metal ions were used as the catalysis to graphitize the ion-exchange resin. Second, an KOH activation step at low temperatures (800℃) was applied on the exchange resin to produce a hierarchical porous structure of 3DG materials. The method of catalysis, chemical activation and heating treatment can form a unique interconnected structure and also effectively prevent graphene nanosheets from aggregating. Various structural and morphology analyses have been characterized by X-ray powder diffraction, Raman, Scanning electron microscope and Transmission electron microscope. Additionally, the enhanced specific surface area can improve capacitor performance of 3DG, which exhibited a high specific capacitance of 250 F/g when measured in a three-electrode system (KOH aqueous solution) and 120 F/g in a symmetric supercapacitor (TEMABF4/PC organic electrolytes). Furthermore, the as-prepared 3DG were successfully employed as both cathode and anode active materials for lithium ion capacitors (3DG-LIC) with high energy density (105 Wh/kg) because the potential window of 3DG-LIC extended from 2.5 to 4.0 V compared to traditional supercapacitor (SC) by prelithiation of anode. The performance and operating mechanism of 3DG-LIC were further studied by cyclic voltammetry, galvanostatic charge/dis-charge, and electrochemical impedance spectroscopy. The similar chemistry and microstructure maximizes the capacity and rate performance of cathode and anode, which indicates that the 3DG-LIC can be a promising candidate for high-energy-power storage system and would have a wide application in other electrochemical applications.
Gu Xiaoyu , Hong Ye , Ai Guo , Wang Chaoyang , Mao Wenfeng . All Graphene Lithium Ion Capacitor with High-Energy-Power Density Performance[J]. Acta Chimica Sinica, 2018 , 76(8) : 644 -648 . DOI: 10.6023/A18020081
[1] Liu, J. Y.; Li, X. X.; Huang, J. R.; Li, J. J.; Zhou, P.; Liu, J. H.; Huang, X. J. J. Mater. Chem. A 2017, 5, 5977.
[2] Chen, C. J.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Yao, Y. G.; Gong, Y. H.; Kierzewski, I.; Xie, J.; Hu, L. B. Energ. Environ. Sci. 2017, 10, 538.
[3] Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Hui, B.; Xu, F. F.; Huang, F. Q. Science 2015, 350, 1508.
[4] Kucinskis, G.; Bajars, G.; Kleperis, J. J. Power Sources 2013, 240, 66.
[5] Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Phys. Chem. Chem. Phys. 2011, 13, 17615.
[6] Yang, Y. Y.; Huang, Q.; Niu, L. Y.; Wang, D. R.; Yan, C.; She, Y. Y.; Zheng, Z. J. Adv. Mater. 2017, 29, 1606679.
[7] Hao, P.; Cui, G. W.; Shi, X. F.; Xie, J. F.; Xia, X. Y.; Sang, Y. H.; Wong, C. P.; Liu, H.; Tang, B. Chin. J. Chem. 2017, 35, 699.
[8] Zhang, J. H.; Zhang, D. L.; Dai, G. H.; Fang, Q. R.; Qiu, S. L. Chin. J. Chem. 2016, 34, 203.
[9] Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. Small 2015, 11, 1470.
[10] Ren, J. J.; Su, L. W.; Qin, X.; Yang, M.; Wei, J. P.; Zhou, Z.; Shen, P. W. J. Power Sources 2014, 264, 108.
[11] Yuan, X. H.; Chen, B. W.; Wu, X. W.; Mo, J.; Liu, Z. C.; Hu, Z. Y.; Liu, Z. H.; Zhou, C. J.; Yang, H. J.; Wu, Y. P. Chin. J. Chem. 2017, 35, 61.
[12] Liu, Z.; Chen, W. L.; Fan, X.; Yu, J. Y.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.
[13] Wang, R. J.; Jia, P. F.; Yang, Y. Y.; An, N.; Zhang, Y. D.; Wu, H. Y.; Hu, Z. G. Chin. J. Chem. 2016, 34, 114.
[14] Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. J. Am. Chem. Soc. 2016, 138, 5731.
[15] Cao, W. J.; Zheng, J. P. J. Power Sources 2012, 213, 180.
[16] Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Nano Lett. 2014, 14, 1987.
[17] Zhang, T. F.; Zhang, F.; Zhang, L.; Lu, Y. H.; Zhang, Y.; Yang, X.; Ma, Y. F.; Huang, Y. Carbon 2015, 92, 106.
[18] Kim, H.; Park, K. Y.; Hong, J.; Kang, K. Sci. Rep. 2014, 4, 1.
[19] An, Z. X.; Yan, L. L.; Xia, H. H.; Xu, J. Q.; Hua, L. Materials China 2016, 35, 528. (安仲勋, 颜亮亮, 夏恒恒, 徐甲强, 华黎, 中国材料进展, 2016, 35, 528.)
[20] Jang, B. Z.; Liu, C. G.; Neff, D.; Yu, Z. N.; Wang, M. C.; Xiong, W.; Zhamu, A. Nano Lett. 2011, 11, 3785.
[21] Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210.
[22] Wen, Z.; Han, G. Y.; Xiao, Y. M.; Chang, Y. Z.; Li, M. Y.; Zhang, Y. Y. Chin. J. Chem. 2016, 34, 98.
[23] Su, S. J.; Lai, Q. X.; Liang, Y. Y. Acta Chim. Sinica 2015, 73, 735. (苏善金, 来庆学, 梁彦瑜, 化学学报, 2015, 73, 735.)
[24] Chen, J. S.; Wu, B.; Liu, Y. Q. Acta Chim. Sinica 2014, 72, 359. (陈集思, 武斌, 刘云圻, 化学学报, 2014, 72, 359.)
[25] Gu, X. Y.; Deng, Y. H.; Wang, C. Y. ACS Sustainable Chem. Eng. 2016, 5, 325.
[26] Gu, X. Y.; Yang, Y.; Hu, Y.; Hu, M.; Huang, J.; Wang, C. Y. J. Mater. Chem. A 2015, 3, 5866.
[27] Zhang, L.; Zhang, F.; Yang, X.; Long, G. K.; Wu, Y. P.; Zhang, T. F.; Leng, K.; Huang, Y.; Ma, Y. F.; Yu, A.; Chen, Y. S. Sci. Rep. 2013, 3, 1408.
[28] Wen, L.; Liu, C. M.; Song, R. S.; Luo, H. Z.; Shi, Y.; Li, F.; Cheng, H. M. Acta Chim. Sinica 2014, 72, 333. (闻雷, 刘成名, 宋仁升, 罗洪泽, 石颖, 李峰, 成会明, 化学学报, 2014, 72, 333.)
/
〈 |
|
〉 |