Article

In situ X-ray Absorption Spectroscopy Characterization of Copper Valence State in Cu-Zn/SiO2 Catalyst

  • Jia Zhenlong ,
  • Tu Yunbao ,
  • Wang Jianqiang ,
  • Frenkel Anatoly I. ,
  • Yang Weimin ,
  • Liu Zhongneng ,
  • Xu Zhongqianga
Expand
  • a Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208;
    b Physics Department, Yeshiva University, New York, NY 10016, United States

Received date: 2018-01-18

  Online published: 2018-06-13

Supported by

Project supported by the international cooperation project between China Petrochemical Technology Co., Ltd. and Yeshiva University.

Abstract

The valence states of copper-based catalyst are still controversial for whether Cu+ exists or even dominates the corresponding catalysis performance, especially for the catalyst prepared by unconventional method. For example, Cu/SiO2 catalyst prepared by deposition-precipitation exhibits different ratio of Cu0 and Cu+ in the literatures. Zinc-doping Cu/SiO2 catalyst is primarily chosen for carbonyl hydrogenation. Additionally, the copper catalysts employed in the industrial reactor require a doping of zinc for catalyst stability and relatively low temperature reduction, which makes the valence states of copper catalyst under working conditions even more complicated. In this paper, copper phyllosilicate, 15 wt% Cu-5.0 wt% Zn/SiO2, was prepared by ammonia evaporation method with the following procedures:(1) complexation of Cu/Zn to silicasol by mixing of an amount of copper ammonia solution (0.5 mol/L) and zinc ammonia solution (0.5 mol/L) with silicasol (5%, SiO2) for 5 h at room temperature, and then decomposition of metal ammonia under 95℃; (2) dried, crushed and calcined at 450℃ for 4 h. The Cu/SiO2 catalyst precursor without the addition of zinc was prepared with the same procedures as Cu-Zn catalyst precursor. The valence states of copper catalyst of Cu-Zn/SiO2 and Cu/SiO2 catalyst during hydrogen reduction in the temperature range of 20℃ to 350℃ has been studied by in situ X-ray absorption spectroscopy characterization under the atmosphere of 10% H2 in He, 50 mL/min. Valence state composition was analyzed by using Linear Combination Fitting (LCF) method based on X-ray Absorption Near Edge Spectroscopy (XANES) spectra, which indicated:(1) the reduction degree of Cu2+ to Cu0 is increased with the addition of zinc; (2) Cu+ occurred and mainly existed at low reduction temperature (<250℃) with a low concentration, but it diminished completely at high reduction temperature; (3) Cu0 could be the active center for hydrogenation of methyl acetate to ethanol.

Cite this article

Jia Zhenlong , Tu Yunbao , Wang Jianqiang , Frenkel Anatoly I. , Yang Weimin , Liu Zhongneng , Xu Zhongqianga . In situ X-ray Absorption Spectroscopy Characterization of Copper Valence State in Cu-Zn/SiO2 Catalyst[J]. Acta Chimica Sinica, 2018 , 76(8) : 639 -643 . DOI: 10.6023/A18010036

References

[1] Zong, H. Y.; Tu, Y. B.; Chen, S. P.; Liu, Z. N. Ind. Catal. 2015, 23, 234(in Chinese). (宗弘元, 涂云宝, 陈仕萍, 刘仲能, 工业催化, 2015, 23, 234.)
[2] Guan, X.; Cao, Z. B.; Han, D. Y.; Yang, T. Y.; Gong, J. Y. Contemp. Chem. Ind. 2015, 44, 991(in Chinese). (管鑫, 曹祖宾, 韩冬云, 杨天宇, 宫建远, 当代化工, 2015, 44, 991.)
[3] Zhang, Y. L.; Wang, M.; Cao, P.; Liao, J. Acta Chim. Sinica 2017, 75, 794(in Chinese). (张涌灵, 王敏, 曹鹏, 廖建, 化学学报, 2017, 75, 794.)
[4] Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhou, Z. F.; Pan, P. B.; Lin, L.; Qin, Y. Y.; Guo, G. C.; Yao, Y. G. Chin. J. Chem. 2017, 35, 759.
[5] Zhu, Y.; Kong, X.; Cao, D.-B.; Cui, J.; Zhu, Y.; Li, Y.-W. ACS Catal. 2014, 4, 3675.
[6] Ma, X.; Chi, H.; Yue, H.; Zhao, Y.; Xu, Y.; Lv, J.; Wang, S.; Gong, J. AIChE J. 2013, 59, 2530.
[7] Kong, X.; Ma, C.; Zhang, J.; Sun, J.; Chen, J.; Liu, K. Appl. Catal. A 2016, 509, 153.
[8] Li, H.; Huang, W. J.; Xiao, C. C.; Cong, H. F.; Gao, X.; Li, X. G. Chem. Ind. Eng. Prog. 2015, 34, 3644(in Chinese). (李洪, 黄伟进, 肖财春, 从海峰, 高鑫, 李鑫钢, 化工进展, 2015, 34, 3644.)
[9] Chen, G.; Shen, W.; Xu, H. L. Acta Chim. Sinica 2002, 60, 1601(in Chinese). (陈庚, 沈伟, 徐华龙, 化学学报, 2002, 60, 1601.)
[10] Yin, A. Y.; Guo, X. Y.; Dai, W. L.; Fan, K. N. Acta Chim. Sinica 2010, 68, 1285(in Chinese). (尹安远, 郭晓洋, 戴维林, 范康年, 化学学报, 2010, 68, 1285.)
[11] van de Scheur, F. T.; Staal, L. H. Appl. Catal. A 1994, 108, 63.
[12] Chen, L.-F.; Guo, P.-J.; Qiao, M.-H.; Yana, S.-R.; Li, H.-X.; Shen, W.; Xu, H.-L.; Fan, K.-N. J. Catal. 2008, 257, 172.
[13] Guo, X.; Yin, A.; Dai, W.-L.; Fan, K. Catal. Lett. 2009, 132, 22.
[14] Zhao, L.; Zhao, Y.; Wang, S.; Yue, H.; Wang, B.; Lv, J.; Ma, X. Ind. Eng. Chem. Res. 2012, 51, 13935.
[15] Van Der Grift, C. J. G.; Elberse, P. A.; Mulder, A.; Geus, J. W. Appl. Catal. 1990, 59, 275.
[16] Toupance, T.; Kermarec, M.; Lambert, J. F.; Louis, C. J. Phys. Chem. B 2002, 106, 2277.
[17] Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X. J. Am. Chem. Soc. 2012, 134, 13922.
[18] Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal. 2008, 257, 172.
[19] Yang, W. L.; Zhao, Y. J.; Wang, S. P.; Ma, X. B. Chem. Ind. Eng. 2016, 33, 1(in Chinese). (杨文龙, 赵玉军, 王胜平, 马新宾, 化学工业与工程, 2016, 33, 1.)
[20] Grandjean, D.; Pelipenko, V.; Batyrev, E. D.; van den Heuvel, J. C.; Khassin, A. A.; Yurieva, T. M.; Weckhuysen, B. M. J. Phys. Chem. C 2011, 115, 20175.
[21] Catillon-Mucherie, S.; Ammari, F.; Krafft, J. M.; Lauron-Pernot, H.; Touroude, R.; Louis, C. J. Phys. Chem. C 2007, 111, 11619.
[22] Bair, R. A.; Goddard Ⅲ, W. A. Phys. Rev. B 1980, 22, 2767.
[23] DuBois, J. L.; Mukherjee, P.; Stack, T.; Hedman, B.; Solomon, E. I.; Hodgson, K. O. J. Am. Chem. Soc. 2000, 122, 5775.
[24] Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1987, 109, 6433.
[25] Ravel, B.; Newville, M. J. Synchrotron Radiat. 2005, 12, 537.
[26] Frenkel, A. I.; Hills, C. W.; Nuzzo, R. G. J. Phys. Chem. B 2001, 105, 12689.
[27] Nashner, M. S.; Frenkel, A. I.; Adler, D. L.; Shapley, J. R.; Nuzzo, R. G. J. Am. Chem. Soc. 1997, 119, 7760.
[28] Gaur, A.; Shrivastava, B. D.; Joshi, S. K. J. Phys.:Conf. Ser. 2009, 190, 12084.

Outlines

/