Communication

Asymmetric Allylic C-H Alkylation of 1,4-Dienes with Aldehydes

  • Zhou Xiao-Le ,
  • Su Yong-Liang ,
  • Wang Pu-Sheng ,
  • Gong Liu-Zhu
Expand
  • a. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026;
    b. Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026

Received date: 2018-06-15

  Online published: 2018-07-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21502183, 21602214).

Abstract

In the recent decade, the palladium-catalyzed allylic C-H alkylation reaction of simple alkenes has been well-established as an efficient and atom-economical synthetic alternative for the fine chemical synthesis without the requirement of any prefunctionalization, in comparison with the conventional procedures. We recently established a highly enantioselective α-allylation reaction of enolizable aldehydes with terminal alkenes by using a ternary catalyst system, including palladium, amine, and chiral Brønsted acid, wherein the chiral anion controls the enantioselectivity. Although this protocol provides allylic alkylation products with high levels of enantioselectivity of up to 90% ee, the extension of the optimal conditions to a 1,4-diene led to a very low regioslectivity. In the presence of a palladium complex, an oxidant and a chiral phosphoric acid, the 1,4-diene could be smoothly oxidized and principally generated two regiomeric π-vinylallyl-palladium phosphate intermediates, either of which led to different products. Therefore, the simultaneous control of regio-and stereoselectivities in the allylic C-H alkylation reaction of aldehydes with 1,4-dienes would pose additional challenge in comparison with a similar reaction of allylarenes. Herein, we will report an asymmetric α-allylation of enolizable aldehydes with a wide range of 1,4-dienes enabled by cooperative catalysis of a palladium complex, amine, and a chiral Brønsted acid. The presence of 6 mol% Pd(OAc)2, 24 mol% P(4-MeOC6H4)3, 6 mol% chiral phosphoric acid (R)-TRIP, 80 mol% cumylamine and 1.50 equivalents of 2,6-dimethylbenzoquinone enabled (E)-penta-1,4-dien-1-ylbenzene (1a) to smoothly undergo the asymmetric allylic C-H alkylation reaction with 2-phenylpropanal (2a), giving rise to the desired α-allylated aldehyde 3a in a 77% isolated yield, 11:1 regioselectivity, 20:1 E/Z and 93% ee. Under the optimal conditions, the generality for enolizable aldehydes was investigated and revealed that 2-aryl propinonaldehydes bearing either electron-donating or electron-withdrawing substituent at the para-(3b~3f) or meta-(3g~3i) position of the phenyl moiety were nicely tolerated, giving rise to the desired allylation products in moderate to good yields with excellent regio-, E/Z-and enantioselectivities. Moreover, 2-naphthyl propinonaldehyde was also able to participate in the asymmetric allylic C-H alkylation reaction, providing the allylation product (3j) with 73% yield, 10:1 regioselectivity, 12:1 E/Z and 91% ee. The examination of 1,4-dienes found that this protocol tolerated a wide scope of aryl and alkyl substituted 1,4-dienes, which showed broad adaptability for the facile construction of a broad spectrum of chiral α-quaternary carbonyl compounds. In addition to the terminal aryl-substituted 1,4-dienes (3k~3q), different substitution patterns were allowed to offer excellent enantioselectivities ranging from 92% ee to 95% ee. Interestingly, this protocol was also amenable to a long chain aliphatic substituent. Although a terminal phenyl (3r) group showed detrimental effect on the regio-and E/Z-selectivities, while the ester (3s), chloride (3t), ether (3u) and cyclohexyl (3v) groups were nicely compatible with the protocol, affording the products with satisfactory results in terms of yields, regio-and stereoselectivities.

Cite this article

Zhou Xiao-Le , Su Yong-Liang , Wang Pu-Sheng , Gong Liu-Zhu . Asymmetric Allylic C-H Alkylation of 1,4-Dienes with Aldehydes[J]. Acta Chimica Sinica, 2018 , 76(11) : 857 -861 . DOI: 10.6023/A18060235

References

[1] (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, 37, 388.
(b) Trost, B. M.; Jiang, C. Synthesis 2006, 369.
(c) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593.
(d) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
[2] (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
(b) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292.
(c) Zheng, N.; Song, W. Chin. J. Org. Chem. 2017, 37, 1099(in Chinese). (郑楠, 宋汪泽, 有机化学, 2017, 37, 1099.)
(d) Ma, S.; Zhong, Y.; Wang, S.; Xu, Z.; Chang, M.; Wang, R. Acta Chim. Sinica 2014, 72, 825(in Chinese). (马世雄, 钟源, 王守磊, 许兆青, 常民, 王锐, 化学学报, 2014, 72, 825.)
(e) Song, S.; Zhou, H.; Li, X.; Wang, L.; Li, Y.; Wang, J. Chin. J. Org. Chem. 2014, 34, 706(in Chinese). (宋沙沙, 周宏勇, 李小娜, 王丽华, 李云庆, 王家喜, 有机化学, 2014, 34, 706.)
[3] (a) Hayashi, T. J. Organomet. Chem. 1999, 576, 195.
(b) Helmchen, G. J. Organomet. Chem. 1999, 576, 203.
(c) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
(d) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
(e) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747.
[4] (a) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 2846.
(b) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343.
(c) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem. 2013, 2013, 2745.
(d) Reeves, C. M.; Eidamshaus, C.; Kim, J.; Stoltz, B. M. Angew. Chem. Int. Ed. 2013, 52, 6718.
[5] (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
(b) Jiang, G.; List, B. Angew. Chem. Int. Ed. 2011, 50, 9471.
(c) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853.
(d) Tao, Z. L.; Zhang, W. Q.; Chen, D. F.; Adele, A.; Gong, L. Z. J. Am. Chem. Soc. 2013, 135, 9255.
(e) Wang, P. S.; Lin, H. C.; Zhai, Y. J.; Han, Z. Y.; Gong, L. Z. Angew. Chem. Int. Ed. 2014, 53, 12218.
(f) Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Synthesis 2014, 46, 1367.
[6] (a) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron:Asymmetry 2001, 12, 1567.
(b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
(c) Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.
(d) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302.
(e) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222.
(f) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
(g) Allen, A. E.; Macmillan, D. W. Chem Sci 2012, 2012, 633.
(h) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
(i) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091(in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)
(j) Chen, D. F.; Han, Z. Y.; Zhou, X. L.; Gong, L. Z. Acc. Chem. Res. 2014, 47, 2365.
(k) Li, Y.; Huang, Z. Acta Chim. Sinica 2017, 75, 280(in Chinese). (李娅琼, 黄志真, 化学学报, 2017, 75, 280.)
[7] (a) Jensen, T.; Fristrup, P. Chem. Eur. J. 2009, 15, 9632.
(b) Liu, G.; Wu, Y. Top. Curr. Chem. 2010, 292, 195.
(c) Engelin, C. J.; Fristrup, P. Molecules 2011, 16, 951.
(d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(e) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(f) Li, B. J.; Shi, Z. J. Chem. Soc. Rev. 2012, 41, 5588.
(g) Liron, F.; Oble, J.; Lorion, M. M.; Poli, G. Eur. J. Org. Chem. 2014, 5863.
(h) Zheng, C.; You, S. L. RSC Adv. 2014, 4, 6173.
(i) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219(in Chinese). (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[8] (a) Trost, B. M.; Thaisrivongs, D. A.; Donckele, E. J. Angew. Chem. Int. Ed. 2013, 52, 1523.
(b) Trost, B. M.; Donckele, E. J.; Thaisrivongs, D. A.; Osipov, M.; Masters, J. T. J. Am. Chem. Soc. 2015, 137, 2776.
[9] (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
(b) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; De Vries, J. G. Acc. Chem. Res. 2007, 40, 1267.
(c) Teichert, J. F.; Feringa, B. L. Angew. Chem. Int. Ed. 2010, 49, 2486.
(d) Zhang, Z. F.; Xie, F.; Yang, B.; Yu, H.; Zhang, W. B. Chin. J. Org. Chem. 2011, 31, 429(in Chinese). (张振锋, 谢芳, 杨波, 余焓, 张万斌, 有机化学, 2011, 31, 429.)
[10] (a) Wang, P. S.; Liu, P.; Zhai, Y. J.; Lin, H. C.; Han, Z. Y.; Gong, L. Z. J. Am. Chem. Soc. 2015, 137, 12732.
(b) Lin, H. C.; Wang, P. S.; Tao, Z. L.; Chen, Y. G.; Han, Z. Y.; Gong, L. Z. J. Am. Chem. Soc. 2016, 138, 14354.
(c) Wang, P. S.; Shen, M. L.; Wang, T. C.; Lin, H. C.; Gong, L. Z. Angew. Chem. Int. Ed. 2017, 56, 16032.
[11] Tang, S.; Wu, X.; Liao, W.; Liu, K.; Liu, C.; Luo, S.; Lei, A. Org. Lett. 2014, 16, 3584.
[12] (a) Lacour, J.; Moraleda, D. Chem. Commun. 2009, 7073.
(b) Mahlau, M.; List, B. Isr. J. Chem. 2012, 52, 630.
(c) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nature Chem. 2012, 4, 603.
(d) Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534.
(e) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518.
[13] (a) Oppolzer, W. Angew. Chem. Int. Ed. Engl. 1984, 23, 876.
(b) Yasuda, H.; Nakamura, A. Angew. Chem. Int. Ed. Engl. 1987, 26, 723.
(c) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 11998, 371.
(d) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668.
(e) Takao, K.; Munakata, R.; Tadano, K. Chem. Rev. 2005, 105, 4779.
[14] (a) Trost, B. M.; Hansmann, M. M.; Thaisrivongs, D. A. Angew. Chem. Int. Ed. 2012, 51, 4950.
(b) Trost, B. M.; Thaisrivongs, D. A.; Hansmann, M. M. Angew. Chem. Int. Ed. 2012, 51, 11522.
[15] (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.
(b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(c) Terada, M. Synthesis 2010, 1929.
(d) Yu, J.; Shi, F.; Gong, L. Z. Acc. Chem. Res. 2011, 44, 1156.
(e) Wu, H.; He, Y.-P.; Shi, F. Synthesis 2015, 47, 1990.

Outlines

/