Accounts

Supramolecular Free Radicals: Fabrication, Modulation and Functions

  • Jiao Yang ,
  • Zhang Xi
Expand
  • Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering, Tsinghua University, Bei-jing 100084

Received date: 2018-07-16

  Online published: 2018-07-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21434004, 91527000).

Abstract

Modulating the activity of radicals is of great importance for the applications in radical-based materials and radical-mediated reactions. To this end, we have proposed a new concept of "supramolecular free radicals", which refers to the free radicals stabilized or activated through supramolecular approaches. Based on the host-guest chemistry of cucurbiturils (CB), we have fabricated three kinds of supramolecular free radicals to modulate the activity and realize diverse functions. Firstly, radical anions can be stabilized by the steric effect and electrostatic effect of CB. As a result, we have constructed a highly efficient near-infrared photothermal conversion system, which displays selective antibacterial performance. Secondly, owing to the electrostatic effect of CB, radical cations can be activated to induce a significant acceleration of Fenton oxidation reaction. Thirdly, by taking advantage of the dynamic nature of host-guest interactions, we can endow the reaction intermediate with adaptive reactivity, which greatly improves the catalytic efficiency of alcohol oxidation. It is highly anticipated that this series of research opens a new horizon in supramolecular materials and supramolecular catalysis.

Cite this article

Jiao Yang , Zhang Xi . Supramolecular Free Radicals: Fabrication, Modulation and Functions[J]. Acta Chimica Sinica, 2018 , 76(9) : 659 -665 . DOI: 10.6023/A18070273

References

[1] Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. Nature 2015, 527, 78.
[2] Ortony, J. H.; Newcomb, C. J.; Matson, J. B.; Palmer, L. C.; Doan, P. E.; Hoffman, B. M.; Stupp, S. I. Nat. Mater. 2014, 13, 812.
[3] Peng, Q.; Obolda, A.; Zhang, M.; Li, F. Angew. Chem., Int. Ed. 2015, 54, 7091.
[4] Rajca, A.; Wang, Y.; Boska, M.; Paletta, J. T.; Olankitwanit, A.; Swanson, M. A.; Mitchell, D. G.; Eaton, S. S.; Eaton, G. R.; Rajca, S. J. Am. Chem. Soc. 2012, 134, 15724.
[5] Studer, A.; Curran Dennis, P. Angew. Chem. Int. Ed. 2016, 55, 58.
[6] Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22. (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
[7] Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
[8] Zetterlund, P. B.; Thickett, S. C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. Chem. Rev. 2015, 115, 9745.
[9] Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757.
[10] Lebelev, O. L.; Kazarnovskii, S. N. Zhur. Obshch. Khim. 1960, 30, 1631.
[11] Segura José, L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40, 1372.
[12] Hicks, R. G. Org. Biomol. Chem. 2007, 5, 1321.
[13] Woodward, A. N.; Kolesar, J. M.; Hall, S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. J. Am. Chem. Soc. 2017, 139, 8467.
[14] Moulin, E.; Niess, F.; Maaloum, M.; Buhler, E.; Nyrkova, I.; Giuseppone, N. Angew. Chem., Int. Ed. 2010, 49, 6974.
[15] Li, H.; Zhu, Z.; Fahrenbach, A. C.; Savoie, B. M.; Ke, C.; Barnes, J. C.; Lei, J.; Zhao, Y. L.; Lilley, L. M.; Marks, T. J.; Ratner, M. A.; Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 456.
[16] Benson, C. R.; Fatila, E. M.; Lee, S.; Marzo, M. G.; Pink, M.; Mills, M. B.; Preuss, K. E.; Flood, A. H. J. Am. Chem. Soc. 2016, 138, 15057.
[17] Ulas, G.; Lemmin, T.; Wu, Y.; Gassner, G. T.; DeGrado, W. F. Nat. Chem. 2016, 8, 354.
[18] Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621.
[19] Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.
[20] Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.
[21] Song, Q.; Li, F.; Wang, Z.; Zhang, X. Chem. Sci. 2015, 6, 3342.
[22] Tauber, M. J.; Kelley, R. F.; Giaimo, J. M.; Rybtchinski, B.; Wasielewski, M. R. J. Am. Chem. Soc. 2006, 128, 1782.
[23] Marcon, R. O.; Brochsztain, S. J. Phys. Chem. A 2009, 113, 1747.
[24] Jiao, Y.; Liu, K.; Wang, G.; Wang, Y.; Zhang, X. Chem. Sci. 2015, 6, 3975.
[25] Yang, Y.; He, P.; Wang, Y.; Bai, H.; Wang, S.; Xu, J.-F.; Zhang, X. Angew. Chem., Int. Ed. 2017, 56, 16239.
[26] Neyens, E.; Baeyens, J. J. Hazard. Mater. 2003, 98, 33.
[27] Pignatello, J. J.; Oliveros, E.; MacKay, A. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1.
[28] Jiao, Y.; Li, W.-L.; Xu, J.-F.; Wang, G.; Li, J.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 8933.
[29] Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. Rev. 2007, 36, 267.
[30] Ko, Y. H.; Kim, H.; Kim, Y.; Kim, K. Angew. Chem., Int. Ed. 2008, 47, 4106.
[31] Smith, L. C.; Leach, D. G.; Blaylock, B. E.; Ali, O. A.; Urbach, A. R. J. Am. Chem. Soc. 2015, 137, 3663.
[32] Tang, B.; Li, W.-L.; Jiao, Y.; Lu, J.-B.; Xu, J.-F.; Wang, Z.; Li, J.; Zhang, X. Chem. Sci. 2018, 9, 5015.
[33] Lucio Anelli, P.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559.
[34] Ding, B.; Ye, Y.; Yin, Q.; Cui, J.; Wang, K.; Luo, J.; Jiang, B. Acta Chim. Sinica 2009, 67, 1383. (丁彬, 叶应庆, 尹强, 崔俊杰, 王克, 罗健辉, 江波, 化学学报, 2009, 67, 1383.)
[35] Endo, T.; Miyazawa, T.; Shiihashi, S.; Okawara, M. J. Am. Chem. Soc. 1984, 106, 3877.
[36] Yang, C.; Fontaine, O.; Tarascon, J. M.; Grimaud, A. Angew. Chem., Int. Ed. 2017, 56, 8652.
[37] Jiao, Y.; Tang, B.; Zhang, Y.; Xu, J.-F.; Wang, Z.; Zhang, X. Angew. Chem., Int. Ed. 2018, 57, 6077.

Outlines

/