Research Progress of Ionic Liquid-Inorganic Particle Hybrid Electrolytes in Secondary Batteries
Received date: 2018-06-27
Online published: 2018-07-27
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21601195, 51625204, 21671196), the Qingdao Science and Technology Program (No. 17-1-1-30-jch) and the Qingdao Key Lab of Solar Energy Utilization & Energy Storage Technology.
High-performance electrolyte is one of the key materials for achieving secondary batteries with high energy density, long cycle life and good safety. Traditional organic and aqueous systems, however, due to many restrictions (such as narrow potential window, low ionic conductivity, dendrite, gas expansion and corrosion, etc.), are unable to meet the demand of the further development for secondary batteries. In recent years, ionic liquid-inorganic particle hybrid electrolytes (IL-NPHE) have attracted much attention due to their high stabilities, non-combustibilities and various synergistic characteristics. This paper focuses on the latest research progress of IL-NPHE, and summarizes the physicochemical and electrochemical properties of this electrolyte system. Additionally, the synergistic mechanism between ionic liquid and inorganic particles is systematically summarized. Based on the above discussion, the future development trend and direction of IL-NPHE are prospected.
Qiu Huayu , Zhao Jingwen , Zhou Xinhong , Cui Guanglei . Research Progress of Ionic Liquid-Inorganic Particle Hybrid Electrolytes in Secondary Batteries[J]. Acta Chimica Sinica, 2018 , 76(10) : 749 -756 . DOI: 10.6023/A18060248
[1] Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938.
[2] Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy 2016, 1, 16039.
[3] Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M. A.; Cresce, A. V.; Wang, F.; Yang, C.; Hu, Y.-S.; Xu, K.; Wang, C. Adv. Energy Mater. 2017, 7, 1701189.
[4] Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.
[5] Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508.
[6] Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123.
[7] Scrosati, B.; Hassoun, J.; Sun, Y.-K. Energy Environ. Sci. 2011, 4, 3287.
[8] Xia, L.; Yu, L.-P.; Hu, D.; Chen, Z. Acta Chim. Sinica 2017, 75, 1183. (夏兰, 余林颇, 胡笛, 陈政, 化学学报, 2017, 75, 1183.)
[9] Wang, M.; Ma, R.-G.; Liu, Y.; Chung, C.-Y.; Deng, Y.-H.; Lu, Z.-G. Chin. J. Chem. 2017, 35, 1299.
[10] Scrosati, B.; Garche, J. J. Power Sources 2010, 195, 2419.
[11] Herranz, J.; Garsuch, A.; Gasteiger, H. A. J. Phys. Chem. C 2012, 116, 19084.
[12] Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; Reiter, J. Nano Lett. 2014, 14, 6572.
[13] Nakamoto, H.; Suzuki, Y.; Shiotsuki, T.; Mizuno, F.; Higashi, S.; Takechi, K.; Asaoka, T.; Nishikoori, H.; Iba, H. J. Power Sources 2013, 243, 19.
[14] Xu, J.-Q.; Yang, J.; NuLi, Y.-N.; Zhang, W.-B. Acta Chim. Sinica 2005, 63, 1733. (许金强, 杨军, 努丽燕娜, 张万斌, 化学学报, 2005, 63, 1733.)
[15] Monti, D.; Jonsson, E.; Rosa Palacin, M.; Johansson, P. J. Power Sources 2014, 245, 630.
[16] Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. J. Mater. Chem. A 2014, 2, 5655.
[17] Li, C.-Y.; Patra, J.; Yang, C.-H.; Tseng, C.-M.; Majumder, S. B.; Dong, Q.-F.; Chang, J.-K. ACS Sustainable Chem. Eng. 2017, 5, 8269.
[18] Yamamoto, T.; Matsumoto, K.; Hagiwara, R.; Nohira, T. J. Phys. Chem. C 2017, 121, 18450.
[19] Fu, L.-J.; Li, N.; Liu, Y.; Wang, W.-G.; Zhu, Y.-S.; Wu, Y.-P. Chin. J. Chem. 2017, 35, 13.
[20] Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. J. Phys. Chem. B 2007, 111, 11794.
[21] Lu, Y.; Das, S. K.; Moganty, S. S.; Archer, L. A. Adv. Mater. 2012, 24, 4430.
[22] Lu, Y.; Moganty, S. S.; Schaefer, J. L.; Archer, L. A. J. Mater. Chem. 2012, 22, 4066.
[23] Chen, L.; Cros, C.; Castagnet, R.; Hagenmuller, P. Solid State Ionics 1988, 31, 209.
[24] Shimano, S.; Zhou, H.; Honma, I. Chem. Mater. 2007, 19, 5216.
[25] Li, Z.-H.; Jiang, J.; Zhang, H.-P.; Wu, Y.-P. Acta Chim. Sinica 2007, 65, 1333. (李朝晖, 蒋晶, 张汉平, 吴宇平, 化学学报, 2007, 65, 1333.)
[26] Ueno, K.; Hata, K.; Katakabe, T.; Kondoh, M.; Watanabe, M. J. Phys. Chem. B 2008, 112, 9013.
[27] Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. J. Am. Chem. Soc. 2003, 125, 1166.
[28] Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Tak-igawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072.
[29] Hamm, S. C.; Basuray, S.; Mukherjee, S.; Sengupta, S.; Mathai, J. C.; Baker, G. A.; Gangopadhyay, S. J. Mater. Chem. A 2014, 2, 792.
[30] Li, M.; Zhu, W.; Zhang, P.; Chao, Y.; He, Q.; Yang, B.; Li, H.; Borisevich, A.; Dai, S. Small 2016, 12, 3535.
[31] Taherkhani, F.; Kiani, S. J. Phys. Chem. C 2017, 121, 24434.
[32] Neouze, M. A.; Le Bideau, J.; Leroux, F.; Vioux, A. Chem. Commun. 2005, 1082.
[33] Litschauer, M.; Neouze, M.-A. J. Mater. Chem. 2008, 18, 640.
[34] Richter, T. V.; Stelzl, F.; Schulz-Gericke, J.; Kerscher, B.; Wuerfel, U.; Niggemann, M.; Ludwigs, S. J. Mater. Chem. 2010, 20, 874.
[35] Neouze, M.-A. J. Mater. Chem. 2010, 20, 9593.
[36] Le Bideau, J.; Viau, L.; Vioux, A. Chem. Soc. Rev. 2011, 40, 907.
[37] Moganty, S. S.; Srivastava, S.; Lu, Y.; Schaefer, J. L.; Rizvi, S. A.; Archer, L. A. Chem. Mater. 2012, 24, 1386.
[38] Li, Y.; Wong, K.-W.; Ng, K.-M. Chem. Commun. 2016, 52, 4369.
[39] Horowitz, A. I.; Panzer, M. J. J. Mater. Chem. 2012, 22, 16534.
[40] Lee, U. H.; Kudo, T.; Honma, I. Chem. Commun. 2009, 3068.
[41] Wu, F.; Chen, N.; Chen, R.; Zhu, Q.; Ban, J.; Li, L. Chem. Mater. 2016, 28, 848.
[42] Moganty, S. S.; Jayaprakash, N.; Nugent, J. L.; Shen, J.; Archer, L. A. Angew. Chem., Int. Ed. 2010, 49, 9158.
[43] Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8, 1545.
[44] Deb, D.; Bhattacharya, S. J. Phys. Chem. C 2017, 121, 6962.
[45] Dutta, B.; Deb, D.; Bhattacharya, S. Int. J. Hydrogen Energy 2018, 43, 4081.
[46] Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q. J. Mater. Chem. A 2017, 5, 18012.
[47] Li, X.; Zhang, Z.; Yin, K.; Yang, L.; Tachibana, K.; Hirano, S.-I. J. Power Sources 2015, 278, 128.
[48] Wu, F.; Chen, N.; Chen, R.; Wang, L.; Li, L. Nano Energy 2017, 31, 9.
[49] Li, X.; Zhang, Z.; Yang, L.; Tachibana, K.; Hirano, S.-I. J. Power Sources 2015, 293, 831.
[50] Kim, J.-K.; Scheers, J.; Park, T. J.; Kim, Y. ChemSusChem 2015, 8, 636.
[51] Bose, P.; Bhattacharya, S. J. Electrochem. Soc. 2017, 164, H788.
[52] Bose, P.; Bhattacharya, S. Int. J. Hydrogen Energy 2018, 43, 4090.
[53] Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567.
[54] Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601.
[55] Garaga, M. N.; Persson, M.; Yaghini, N.; Martinelli, A. Soft Matter 2016, 12, 2583.
[56] Yuan, J.; Mecerreyes, D.; Antonietti, M. Prog. Polym. Sci. 2013, 38, 1009.
[57] Pont, A.-L.; Marcilla, R.; De Meatza, I.; Grande, H.; Mecerreyes, D. J. Power Sources 2009, 188, 558.
[58] Mecerreyes, D. Prog. Polym. Sci. 2011, 36, 1629.
[59] Fukushima, T.; Kosaka, A.; Yamamoto, Y.; Aimiya, T.; Notazawa, S.; Takigawa, T.; Inabe, T.; Aida, T. Small 2006, 2, 554.
[60] Li, X.; Li, S.; Zhang, Z.; Huang, J.; Yang, L.; Hirano, S.-I. J. Mater. Chem. A 2016, 4, 13822.
[61] Guyomard-Lack, A.; Abusleme, J.; Soudan, P.; Lestriez, B.; Guyomard, D.; Le Bideau, J. Adv. Energy Mater. 2014, 4, 1301570.
[62] Deb, D.; Bhattacharya, S. Electrochim. Acta 2017, 245, 430.
[63] Goebel, R.; Hesemann, P.; Weber, J.; Moeller, E.; Friedrich, A.; Beuermann, S.; Taubert, A. Phys. Chem. Chem. Phys. 2009, 11, 3653.
[64] Gupta, A. K.; Verma, Y. L.; Singh, R. K.; Chandra, S. J. Phys. Chem. C 2014, 118, 1530.
[65] Verma, Y. L.; Tripathi, A. K.; Shalu; Singh, V. K.; Balo, L.; Gupta, H.; Singh, S. K.; Singh, R. K. Mater. Sci. Eng., B 2017, 220, 37.
[66] Korf, K. S.; Lu, Y.; Kambe, Y.; Archer, L. A. J. Mater. Chem. A 2014, 2, 11866.
[67] Archie, G. E. Trans. Am. Inst. Min., Metall. Pet. Eng. 1942, 146, 54.
[68] Maier, J. Nat. Mater. 2005, 4, 805.
[69] Maier, J. J. Electroceram. 2015, 34, 69.
[70] Wang, H.; Xu, X.-Q.; Shi, J.-F.; Xu, G. Acta Phys.-Chim. Sin. 2007, 29, 525. (王海, 徐雪青, 史继富, 徐刚, 物理化学学报, 2007, 29, 525.)
/
〈 |
|
〉 |