Review

Research Progress on Electrospun Materials for Sodium-Ion Batteries

  • Wang Ling ,
  • Yang Guorui ,
  • Wang Jianan ,
  • Wang Silan ,
  • Peng Shengjie ,
  • Yan Wei
Expand
  • a Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049;
    b Xi'an Jiaotong University Suzhou Institute, Suzhou 215123;
    c Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049;
    d College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

Received date: 2018-04-03

  Online published: 2018-08-13

Supported by

Project supported by the Fundamental Research Funds for the Central Universities (No. xjj2016052), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM2022), Natural Science Fund of Jiangsu Province (No. BK20170416) and China Postdoctoral Science Foundation Funded Project (No. 2014M560225).

Abstract

The scarce lithium resources would ultimately fail to satisfy the ever-growing industrial demand, especially for the large-scale stationary energy storage. Sodium-ion batteries (SIBs) are considered as promising next-generation power sources because sodium is widely available and exhibits similar chemistry to that of lithium-ion batteries (LIBs). Although sodium share similar physical and chemical properties to lithium, the lager ionic radius, heavier molar mass and less negative redox potential of Na+/Na of the sodium jointly lead to some issues beset the SIBs, such as sluggish sodiation kinetics, larger volume expansion and lower energy density, which need to be tackled to promote the practical applications of the SIBs. Therefore, developing appropriate electrode materials is crucial to achieve SIBs with long lifespan and high energy density. One-dimensional nanostructures can provide orientated electronic (ionic) transport and strong tolerance to volume change, thus enhancing the electrochemical performance of electrode materials. Electrospinning technique is a low cost and versatile method to fabricate continuous one-dimensional functional materials with various morphology and targeted components that has been widely applied in SIBs. The volume change could be buffered efficiently by facilely modifying the morphology of electrospun materials or in-situ compositing with carbon materials. Benefiting from the ultra-high aspect ratio, electrospun one-dimensional electrodes can reduce the ionic transport distance, while provide continuous transport way for electron along the longitudinal direction, which is helpful to improve the sluggish sodiation kinetics. It is also worth noting that free-standing or flexible fibers could be easily obtained via the electrospinning technique, which can be used as binder-free electrode to enhance the energy density of the batteries. The research progress on electrospun materials for sodium-ion batteries is summarized in this review, including cathode materials and anode materials. Their electrochemical performance in sodium storage is discussed in detail. The advantages and challenges of these materials were pointed out, and the future development of electrospun materials for sodium ion batteries was also prospected.

Cite this article

Wang Ling , Yang Guorui , Wang Jianan , Wang Silan , Peng Shengjie , Yan Wei . Research Progress on Electrospun Materials for Sodium-Ion Batteries[J]. Acta Chimica Sinica, 2018 , 76(9) : 666 -680 . DOI: 10.6023/A18040129

References

[1] Pan, H.; Hu, Y.; Chen, L. Energ. Environ. Sci. 2013, 6, 2338.
[2] Hwang, J.; Myung, S.; Sun, Y. Chem. Soc. Rev. 2017, 46, 3529.
[3] Kim, H.; Kim, H.; Ding, Z.; Lee, M.; Lim, K.; Yoon, G.; Kang, K. Adv. Energy Mater. 2016, 6, 1600943.
[4] Samin, N.; Rusdi, R.; Kamarudin, N.; Kamarulzaman, N. Adv. Mater. Res. 2012, 545, 185.
[5] Tanabe, D.; Shimono, T.; Kobayashi, W.; Moritomo, Y. Phys. Status Solidi-R. 2014, 8, 287.
[6] Park, K.; Yu, B.; Goodenough, J. Chem. Mater. 2015, 27, 6682.
[7] Billaud, J.; Clement, R.; Armstrong, A.; Canales-Vazquez, J.; Rozier, P.; Grey, C.; Bruce, P. J. Am. Chem. Soc. 2014, 136, 17243.
[8] Kim, H.; Shakoor, R.; Park, C.; Lim, S.; Kim, J.; Jo, Y.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J. Adv. Funct. Mater. 2013, 23, 1147.
[9] Zheng, Q.; Liu, W.; Li, X.; Zhang, H.; Feng, K.; Zhang, H. J. Mater. Chem. A 2016, 4, 19170.
[10] Zhang, Q.; Wang, W.; Wang, Y.; Feng, P.; Wang, K.; Cheng, S.; Jiang, K. Nano Energy 2016, 20, 11.
[11] Zhao, J.; Gao, Y.; Liu, Q.; Meng, X.; Chen, N.; Wang, C.; Du, F.; Chen, G. Chemistry 2017.
[12] Kubota, K.; Komaba, S. J. Electrochem. Soc. 2015, 162, A2538.
[13] Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica, 2014, 72, 21(in Chinese). (李慧, 吴川, 吴锋, 白莹, 化学学报, 2014, 72, 21)
[14] Zhang, Q.; Uchaker, E.; Candelaria, S.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127.
[15] Liu, D.; Cao, G. Energ. Environ. Sci. 2010, 3, 1218.
[16] Lee, J.; Lee, J.; Chung, K.; Jung, H.; Kim, H.; Mun, J.; Choi, W. Electrochim. Acta 2016, 200, 21.
[17] Cao, Y.; Xiao, L.; Sushko, M.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783.
[18] Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Si-monsen, J.; Ji, X. J. Mater. Chem. A 2013, 1, 10662.
[19] Ryu, W.; Jung, J.; Park, K.; Kim, S.; Kim, I. Nanoscale 2014, 6, 10975.
[20] Liao, S.; Sun, Y.; Wang, J.; Cui, H.; Wang, C. Electrochim. Acta 2016, 211, 11.
[21] Fu, F.; Li, J.; Yao, Y.; Qin, X.; Dou, Y.; Wang, H.; Tsui, J.; Chan, K.; Shao, M. ACS Appl. Mater. Inter. 2017, 9, 16194.
[22] Zhang, Q.; Guo, Y.; Guo, K.; Zhai, T.; Li, H. Chem. Commun. 2016, 52, 6229.
[23] Liu, Y.; Zhang, N.; Kang, H.; Shang, M.; Jiao, L.; Chen, J. Chemistry 2015, 21, 11878.
[24] Wang, J.; Yang, G.; Wang, L.; Yan, W. J. Mater. Chem. A 2016, 4, 8620.
[25] Mai, L.; Xu, L.; Han, C.; Xu, X.; Luo, Y.; Zhao, S.; Zhao, Y. Nano Lett. 2010, 10, 4750.
[26] Ren, Y.; Yang, B.; Wei, H.; Ding, J. Solid State Ionics 2016, 292, 27.
[27] Greiner, A.; Wendorff, J. Angew. Chem. Int. Ed. 2007, 46, 5670.
[28] Jung, J.; Lee, C.; Yu, S.; Kim, I. J. Mater. Chem. A 2016, 4, 703.
[29] Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Nanoscale 2014, 6, 693.
[30] Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154(in Chinese). (向兴德, 卢艳莹, 陈军, 化学学报, 2017, 75, 154.)
[31] Li, M.; Liu, L.; Wang, P.; Li, J.; Leng, Q.; Cao, G. Electrochim. Acta, 2017, 252, 523.
[32] Liu, J.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Nanoscale, 2014, 6, 5081.
[33] Li, H.; Bai, Y.; Wu, F.; Li, Y.; Wu, C. J. Power Sources, 2015, 273, 784.
[34] Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. Solid State Ionics 2015, 278, 281.
[35] Zhu, Q.; Nan, B.; Shi, Y.; Zhu, Y.; Wu, S.; He, L.; Deng, Y.; Wang, L.; Chen, Q.; Lu, Z. J. Solid State Electrochem. 2017, 21, 2985.
[36] Kajiyama, S.; Kikkawa, J.; Hoshino, J.; Okubo, M.; Hosono, E. Chemistry, 2014, 20, 12636.
[37] Barker, J.; Saidi, M.; Swoyer, J. Electrochem. Solid-State Lett. 2003, 6, A1.
[38] Jin, T.; Liu, Y.; Li, Y.; Cao, K.; Wang, X.; Jiao, L. Adv. Energy Mater. 2017, 7, 1700087.
[39] Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica, 2017, 75, 218(in Chinese). (刘丽露, 戚兴国, 胡勇胜, 陈立泉, 黄学杰, 化学学报, 2017, 75, 218.)
[40] Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.
[41] Kalluri, S.; Seng, K.; Pang, W.; Guo, Z.; Chen, Z.; Liu, H.; Dou, S. ACS Appl. Mater. Inter. 2014, 6, 8953.
[42] Kalluri, S.; Pang, W.; Seng, K.; Chen, Z.; Guo, Z.; Liu, H.; Dou, S. J. Mater. Chem. A 2015, 3, 250.
[43] Niu, C.; Meng, J.; Wang, X.; Han, C.; Yan, M.; Zhao, K.; Xu, X.; Ren, W.; Zhao, Y.; Xu, L.; Zhang, Q.; Zhao, D.; Mai, L. Nat. Commun. 2015, 6, 7402.
[44] Niu, Y.; Xu, M.; Dai, C.; Shen, B.; Li, C. Phys. Chem. Chem. Phys. 2017, 19, 17270.
[45] Yu, T.; Lin, B.; Li, Q.; Wang, X.; Qu, W.; Zhang, S.; Deng, C. Phys. Chem. Chem. Phys. 2016, 18, 26933.
[46] Gocheva, I.; Nishijima, M.; Doi, T.; Okada, S.; Yamaki, J.; Nishida, T. J. Power Sources 2009, 187, 247.
[47] Lu, Y.; Wang, L.; Cheng, J.; Goodenough, J. Chem. Commun. 2012, 48, 6544.
[48] Zhao, R.; Zhu, L.; Cao, Y.; Ai, X.; Yang, H. Electrochem. Commun. 2012, 21, 36.
[49] Zhou, M.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. J. Polym. Sci. Pol. Phys. 2013, 51, 114.
[50] Zhang, S.; Zhang, J.; Wu, S.; Lv, W.; Kang, F.; Yang, Q. Acta Chim. Sinica 2017, 75, 163(in Chinese). (张思伟, 张俊, 吴思达, 吕伟, 康飞宇, 杨全红, 化学学报, 2017, 75, 163.)
[51] Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172.
[52] Doeff, M.; Ma, Y.; Visco, S.; Jonghe, L. C. D. J. Electrochem. Soc. 1993, 140, L169.
[53] Zhang, B.; Kang, F.; Tarascon, J.; Kim, J. Prog. Mater Sci. 2016, 76, 319.
[54] Chen, T.; Liu, Y.; Pan, L.; Lu, T.; Yao, Y.; Sun, Z.; Chua, D.; Chen, Q. J. Mater. Chem. A 2014, 2, 4117.
[55] Jin, J.; Shi, Z.; Wang, C. Electrochim. Acta 2014, 141, 302.
[56] Jin, J.; Yu, B.; Shi, Z.; Wang, C.; Chong, C. J. Power Sources 2014, 272, 800.
[57] Zhao, P.; Zhang, J.; Li, Q.; Wang, C. J. Power Sources 2016, 334, 170.
[58] Zhao, P.; Yu, B.; Sun, S.; Guo, Y.; Chang, Z.; Li, Q.; Wang, C. Electrochim. Acta 2017, 232, 348.
[59] Liu, Y.; Zhang, N.; Yu, C.; Jiao, L.; Chen, J. Nano Lett. 2016, 16, 3321.
[60] Zhu, J.; Chen, C.; Lu, Y.; Ge, Y.; Jiang, H.; Fu, K.; Zhang, X. Carbon 2015, 94, 189.
[61] Qi, Y.; Fan, W.; Nan, G. Mater. Lett. 2017, 189, 206.
[62] Chen, Z.; Wang, T.; Zhang, M.; Cao, G. Small 2017, 13, 1604045.
[63] Wang, S.; Xia, L.; Yu, L.; Zhang, L.; Wang, H.; Lou, X. Adv. Energy Mater. 2016, 6, 1502217.
[64] Guo, X.; Zhang, X.; Song, H.; Zhou, J. J. Mater. Chem. A 2017, 5, 21343.
[65] Xu, J.; Wang, M.; Wickramaratne, N.; Jaroniec, M.; Dou, S.; Dai, L. Adv. Mater. 2015, 27, 2042.
[66] Liu, Y.; Fan, L.; Jiao, L. J. Mater. Chem. A 2017, 5, 1698.
[67] Xiong, H.; Slater, M.; Balasubramanian, M.; Johnson, C.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560.
[68] Bi, Z.; Paranthaman, M.; Menchhofer, P.; Dehoff, R.; Bridges, C.; Chi, M.; Guo, B.; Sun, X.; Dai, S. J. Power Sources 2013, 222, 461.
[69] Yang, X.; Wang, C.; Yang, Y.; Zhang, Y.; Jia, X.; Chen, J.; Ji, X. J. Mater. Chem. A 2015, 3, 8800.
[70] Wu, L.; Buchholz, D.; Bresser, D.; Chagas, L.; Passerini, S. J. Power Sources 2014, 251, 379.
[71] Shi, X.; Zhang, Z.; Du, K.; Lai, Y.; Fang, J.; Li, J. J. Power Sources 2016, 330, 1.
[72] Zhang, Y.; Pu, X.; Yang, Y.; Zhu, Y.; Hou, H.; Jing, M.; Yang, X.; Chen, J.; Ji, X. Phys. Chem. Chem. Phys. 2015, 17, 15764.
[73] Huang, J.; Yuan, D.; Zhang, H.; Cao, Y.; Li, G.; Yang, H.; Gao, X. RSC Adv. 2013, 3, 12593.
[74] Pérez-Flores, J.; Baehtz, C.; Kuhn, A.; García-Alvarado, F. J. Mater. Chem. A 2014, 2, 1825.
[75] Su, D.; Dou, S.; Wang, G. Chem. Mater. 2015, 27, 6022.
[76] Wu, Y.; Jiang, Y.; Shi, J.; Gu, L.; Yu, Y. Small 2017, 13, 1700129.
[77] Hwang, J.; Myung, S.; Lee, J.; Abouimrane, A.; Belharouak, I.; Sun, Y. Nano Energy 2015, 16, 218.
[78] Wu, Y.; Liu, X.; Yang, Z.; Gu, L.; Yu, Y. Small 2016, 12, 3522.
[79] Shen, J.; Hu, W.; Li, Y.; Li, L.; Lv, X.; Zhang, L. J. Alloys Compd. 2017, 701, 372.
[80] Udomsanti, P.; Vongsetskul, T.; Limthongkul, P.; Tangboriboonrat, P.; Subannajui, K.; Tammawat, P. Electrochim. Acta 2017, 238, 349.
[81] Xiong, Y.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. ACS Appl. Mater. Inter. 2016, 8, 16684.
[82] Ge, Y.; Zhu, J.; Lu, Y.; Chen, C.; Qiu, Y.; Zhang, X. Electrochim. Acta 2015, 176, 989.
[83] Yeo, Y.; Jung, J.; Park, K.; Kim, I. Sci. Rep. 2015, 5, 13862.
[84] Lee, N.; Jung, J.; Lee, J.; Jang, H.; Kim, I.; Ryu, W. Electrochim. Acta 2018, 263, 417.
[85] Zou, W.; Fan, C.; Li, J. Chin. J. Chem. 2017, 35, 79.
[86] Liu, J.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Phys. Chem. Chem. Phys. 2013, 15, 20813.
[87] Wu, C.; Kopold, P.; Ding, Y.; Aken, P.; Maier, J.; Yu, Y. ACS Nano 2015, 9, 6610.
[88] Wang, D.; Liu, Q.; Chen, C.; Li, M.; Meng, X.; Bie, X.; Wei, Y.; Huang, Y.; Du, F.; Wang, C.; Chen, G. ACS Appl. Mater. Inter. 2016, 8, 2238.
[89] Hu, Q.; Yu, M.; Liao, J.; Wen, Z.; Chen, C. J. Mater. Chem. A 2018, 6, 2365.
[90] Guo, D.; Qin, J.; Zhang, C.; Cao, M. Cryst. Growth Des. 2018, 18, 3291.
[91] Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Huang, Y.; Yang, H. Adv. Energy Mater. 2016, 6, 1502197.
[92] Liu, H.; Liu, Y. Ceram. Int. 2018, 44, 5813.
[93] Li, W.; Zeng, L.; Wu, Y.; Yu, Y. Sci. China Mater. 2016, 59, 287.
[94] Mao, Z.; Zhou, M.; Wang, K.; Wang, W.; Tao, H.; Jiang, K. RSC Adv. 2017, 7, 23122.
[95] Fu, B.; Zhou, X.; Wang, Y. Mater. Lett. 2016, 170, 21.
[96] Wang, X.; Liu, Y.; Wang, Y.; Jiao, L. Small 2016, 12, 4865.
[97] Xia, G.; Gao, Q.; Sun, D.; Yu, X. Small 2017, 13.
[98] Xu, Z.; Yao, S.; Cui, J.; Zhou, L.; Kim, J. Energy Storage Mater. 2017, 8, 10.
[99] Yang, L.; Zhu, Y.; Sheng, J.; Li, F.; Tang, B.; Zhang, Y.; Zhou, Z. Small 2017, 1702588.
[100] Lee, J.; Shin, H.; Lee, C.; Jung, K. Nanoscale Res. Lett. 2016, 11, 45.
[101] Guo, Y.; Zhu, Y.; Yuan, C.; Wang, C. Mater. Lett. 2017, 199, 101.
[102] Wu, L.; Lang, J.; Zhang, P.; Zhang, X.; Guo, R.; Yan, X. J. Mater. Chem. A 2016, 4, 18392.
[103] Xiao, Y.; Lee, S.; Sun, Y. Adv. Energy Mater. 2017, 7, 1601329.
[104] Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. J. Power Sources 2014, 247, 391.
[105] Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater. 2014, 26, 3854.
[106] Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76, 286(in Chinese). (李攀, 刘建, 孙惟袆, 陶占良, 陈军, 化学学报, 2018, 76, 286.)
[107] Ryu, W.; Jung, J.; Park, K.; Kim, S.; Kim, I. Nanoscale 2014, 6, 10975.
[108] Chen, C.; Li, G.; Lu, Y.; Zhu, J.; Jiang, M.; Hu, Y.; Cao, L.; Zhang, X. Electrochim. Acta 2016, 222, 1751.
[109] Zhu, C.; Mu, X.; Aken, P.; Yu, Y.; Maier, J. Angew. Chem. Int. Ed. 2014, 53, 2152.
[110] Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y. Sci. Rep. 2015, 5, 9254.
[111] Cho, J.; Lee, J.; Kang, Y. Sci. Rep. 2016, 6, 23699.
[112] Ko, Y.; Choi, S.; Park, S.; Kang, Y. Nanoscale 2014, 6, 10511.
[113] Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. Adv. Mater. 2015, 27, 3305.
[114] Cho, J.; Lee, S.; Kang, Y. Sci. Rep. 2016, 6, 23338.
[115] Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323.
[116] Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070.
[117] Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 65.
[118] Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.
[119] Dirican, M.; Lu, Y.; Ge, Y.; Yildiz, O.; Zhang, X. ACS Appl. Mater. Inter. 2015, 7, 18387.
[120] Liang, J.; Yuan, C.; Li, H.; Fan, K.; Wei, Z.; Sun, H.; Ma, J. Nano-Micro Lett. 2017, 10.
[121] Liu, Y.; Zhang, N.; Jiao, L.; Chen, J. Adv. Mater. 2015, 27, 6702.
[122] Mao, M.; Yan, F.; Cui, C.; Ma, J.; Zhang, M.; Wang, T.; Wang, C. Nano Lett. 2017, 17, 3830.
[123] Darwiche, A.; Marino, C.; Sougrati, M.; Fraisse, B.; Stievano, L.; Monconduit, L. J. Am. Chem. Soc. 2012, 134, 20805.
[124] Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. ACS Nano 2013, 7, 6378.
[125] Zhu, M.; Kong, X.; Yang, H.; Zhu, T.; Liang, S.; Pan, A. Appl. Surf. Sci. 2018, 428, 448.
[126] Ji, L.; Gu, M.; Shao, Y.; Li, X.; Engelhard, M.; Arey, B.; Wang, W.; Nie, Z.; Xiao, J.; Wang, C.; Zhang, J.; Liu, J. Adv. Mater. 2014, 26, 2901.
[127] Chen, C.; Fu, K.; Lu, Y.; Zhu, J.; Xue, L.; Hu, Y.; Zhang, X. RSC Adv. 2015, 5, 30793.
[128] Jia, H.; Dirican, M.; Chen, C.; Zhu, J.; Zhu, P.; Yan, C.; Li, Y.; Dong, X.; Guo, J.; Zhang, X. ACS Appl. Mater. Inter. 2018.
[129] Jin, Y.; Yuan, H.; Lan, J.; Yu, Y.; Lin, Y.; Yang, X. Nanoscale 2017, 9, 13298.
[130] Yin, H.; Cao, M.; Yu, X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Mater. Chem. Front. 2017, 1, 1615.
[131] Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S.; Wang, C. ACS Nano 2015, 9, 3254.
[132] Ma, X.; Chen, L.; Ren, X.; Hou, G.; Chen, L.; Zhang, L.; Liu, B.; Ai, Q.; Zhang, L.; Si, P.; Lou, J.; Feng, J.; Ci, L. J. Mater. Chem. A 2018, 6, 1574.
[133] Liu, Y.; Zhang, N.; Liu, X.; Chen, C.; Fan, L.; Jiao, L. Energy Storage Mater. 2017, 9, 170.
[134] Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.; Wang, C. Adv. Energy Mater. 2015, 5, 1500174.
[135] Jung, S.; Choi, J.; Han, Y. J. Mater. Chem. A 2018, 6, 1772.
[136] Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Nano Lett. 2014, 14, 1865.
[137] Li, W.; Chou, S.; Wang, J.; Liu, H.; Dou, S. Chem. Commun. 2015, 51, 3682.
[138] Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. ACS Nano 2017, 11, 11602.
[139] Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. J. Mater. Chem. A 2014, 2, 2050.
[140] Ge, X.; Li, Z.; Yin, L. Nano Energy 2017, 32, 117.
[141] Kim, S.; Manthiram, A. Chem. Commun. 2016, 52, 4337.

Outlines

/