Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts
Received date: 2018-06-16
Online published: 2018-08-13
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21572074, 21772052 and 21772053) and the Natural Science Foundation of Hubei Province (Nos. 2015CFA033 and 2017AHB047).
Transition metal catalysis is one of the most important tools to accurately forge chemical bonds in modern organic synthesis. Organocatalysis, a biomimetic catalysis usually with metal-free small organic molecules, is a relatively young research area that started to flourish at the beginning of this century. Catalytic allylic substitutions are a kind of versatile reactions in organic chemistry; the combination of transition metal catalysis and organocatalysis in these reactions not only significantly expands the scope of nucleophiles, but also helps to resolve the stereocontrol issues. This paper will summarize the advance in the field of catalytic asymmetric allylic substitutions through synergetic transition metal-and organocatalysis. According to the source of chirality, these advances will be classified to three types. The first type is the catalytic asymmetric allylic substitutions induced by chiral transition metal catalysts. For these reactions, chiral ligands, including phosphine ligands and hybrid P, N ligands, have been used to achieve the high enantioselectivity. The non-chiral organocatalysts, such as pyrrolidine, Brønsted acids and boron reagents, were only used to activate the nucleophile or assist the generation of π-allyl metal intermediates. The second type is the catalytic asymmetric allylic substitutions induced by chiral organocatalysts. For the reaction of this type, various chiral organocatalysts, including chiral amines, chiral ureas and others, not only activate the substrates, but also control the enantioselectivity of allylic substitutions well through covalent and non-covalent bonds. Non-chiral ligands were only used to improve the catalytic capacity of transition metals. The last type is the catalytic asymmetric allylic substitutions induced by both of chiral transition metal catalysts and chiral organocatalyst. This strategy can not only realize the excellent stereo-control, but also achieve the challenging diastereo-diversity, if there exist continuous chiral centers. Overall, the joint utilization of transition metals and organocatalysts can achieve many significant asymmetric allylic substitutions that were previously difficult to realize through single transition metal catalysis. Meanwhile, the mechanism of representative transformations will be briefly introduced and at last, the prospective in this area will be given, such as simpler allylic sources and greener catalyst system.
Zhang Mao-Mao , Luo Yuan-Yuan , Lu Liang-Qiu , Xiao Wen-Jing . Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts[J]. Acta Chimica Sinica, 2018 , 76(11) : 838 -849 . DOI: 10.6023/A18060237
[1] For selected reviews, see:(a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(b) Mohr, J. T.; Stoltz, B. M. Chem.-Asian J. 2007, 2, 1476.
(c) Lu, Z.; Ma, S.-M. Angew. Chem., Int. Ed. 2008, 47, 258.
(d) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
(e) Butt, N. A.; Yang, G.; Zhang, W. Chem. Rec. 2016, 16, 2687.
(f) Deng, Y.; Yang, W.; Yang, X.; Yang, D. Chin. J. Org. Chem. 2017, 37, 3039(in Chinese). (邓颖颍, 杨文, 杨新, 杨定乔, 有机化学, 2017, 37, 3039.)
[2] (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
(b) Tsuji, J. Acc. Chem. Res. 1969, 2, 144.
[3] (a) Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron. Lett. 1970, 11, 3821.
(b) Hata, G.; Takahashi, K.; Miyake, A. J. Chem. Soc., Chem. Commun. 1970, 1392.
[4] Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.
[5] (a) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747.
(b) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
(c) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
(d) Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
(e) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2017, 75, 655(in Chinese). (于月娜, 徐明华, 化学学报, 2017, 75, 655.)
[6] Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
[7] (a) Yan, X. X.; Liang, C. G.; Zhang, Y.; Hong, W.; Cao, B. X.; Dai, L. X.; Hou, X. L. Angew. Chem., Int. Ed. 2005, 44, 6544.
(b) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 771.
(c) Zhang, K.; Peng, Q.; Hou, X.-L. Angew. Chem., Int. Ed. 2008, 47, 1741.
(d) Liu, W.; Chen, D.; Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734.
(e) Lei, B.-L.; Ding, C.-H.; Yang, X.-F.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734.
(f) Li, X.-H.; Zheng, B.-H.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2013, 15, 6086.
[8] (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
(b) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999.
(c) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
(d) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
(e) Deng, Y.; Kumar, S.; Wang, H. Chem. Commun. 2014, 50, 4272.
(f) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.
(g) Meazza, M.; Rios, R. Synthesis 2016, 48, 960.
(h) Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
(i) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
(j) Sun, Z.; He, J.; Qu, M.; Li, K. Chin. J. Org. Chem. 2015, 35, 1250(in Chinese). (孙哲, 何金梅, 屈孟男, 李侃社, 有机化学, 2015, 35, 1250.)
[9] (a) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron:Asymmetry 2001, 12, 1567.
(b) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
[10] (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
(b) Chen, Y.-C. Synlett 2008, 13, 1919.
(c) Xu, L.-W.; Lu, Y.-X. Org. Biomol. Chem. 2008, 6, 2047.
[11] Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
[12] Bihelovic, F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett. 2007, 9, 5063.
[13] Vulovic, B.; Bihelovic, F.; Matovic, R.; Saicic, R. N. Tetrahedron 2009, 65, 10485.
[14] (a) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 19354.
(b) Zhao, X.; Liu, D.; Xie, F.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2011, 9, 1871.
[15] Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.
[16] Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570.
[17] Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314
[18] Zhou, H.; Yang, H.; Liu, M.; Xia, C.; Jiang, G. Org. Lett. 2014, 16, 5350.
[19] Afewerki, S.; Ibrahem, I.; Rydfjord, J.; Breistein, P.; Córdova, A. Chem. Eur. J. 2012, 18, 2972.
[20] Ma, G.; Afewerki, S.; Deiana, L.; Palo-Nieto, C.; Liu, L.; Sun, J.; Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2013, 52, 6050.
[21] Afewerki, S.; Ma, G.; Ibrahem, I.; Liu, L.; Sun, J.; Córdova, A. ACS Catal. 2015, 5, 1266.
[22] Halskov, K. S.; Næsborg, L.; Tur, F.; Jørgensen, K. A. Org. Lett. 2016, 18, 2220.
[23] Laugeois, M.; Ponra, S.; Ratovelomanana-Vidal, V.; Michelet, V.; Vitale, M. R. Chem. Commun. 2016, 52, 5332.
[24] Meazza, M.; Rios, R. Chem. Eur. J. 2016, 22, 9923.
[25] Leth, L. A.; Glaus, F.; Meazza, M.; Fu, L.; Thøgersen, M.-K.; Bitsch, E.-A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2016, 55, 15272.
[26] (a) Yoshida, M.; Terumine, T.; Masaki, E.; Hara, S. J. Org. Chem. 2013, 78, 10853.
(b) Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Synthesis 2014, 46, 1367.
[27] (a) Zhou, H.; Zhang, L.; Xu, C.; Luo, S. Angew. Chem., Int. Ed. 2015, 54, 12645.
(b) Li, B.; Liu, R.; Liang, R.; Jia, Y. Acta Chim. Sinica 2017, 75, 448(in Chinese). (李保乐, 刘人荣, 梁仁校, 贾义霞, 化学学报, 2017, 75, 448.)
(c) Li, J.; Tan, C.; Mu, X.; Gong, J.; Yang, Z. Chin. J. Chem. 2017, 35, 562.
[28] (a) Muzart, J.; Le Bras, J. Chem. Soc. Rev. 2014, 43, 3003.
(b) Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524.
(c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.
[29] Zhou, H.; Wang, Y.; Zhang, L.; Cai, M.; Luo, S. J. Am. Chem. Soc. 2017, 139, 3631.
[30] (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
(b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(c) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091(in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)
[31] Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
[32] Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.
[33] (a) Wang, P.-S.; Lin, H.-C.; Zhai, Y.-J.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 12218.
(b) Zhang, Z.-J.; Tao, Z,-L.; Arafate, A.; Gong, L.-Z. Acta Chim. Sinica 2017, 75, 1196(in Chinese). (张子競, 陶忠林, 阿拉法特·阿地力, 龚流柱, 化学学报, 2017, 75, 1196.)
(c) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219(in Chinese). (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[34] Boucherif, A.; Duan S.-W.; Yuan, Z.-G.; Lu, L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2016, 358, 2594.
[35] Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.
[36] Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443.
[37] Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
[38] Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
[39] Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.
[40] Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.
[41] Jiang, X.-Y.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.
[42] (a) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
(b) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819.
(c) He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513.
(d) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
(e) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599.
[43] Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
[44] Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.
[45] Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
[46] Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.
[47] Lin, H.-C.; Wang, P.-S.; Tao, Z.-L.; Chen, Y.-G.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2016, 138, 14354.
[48] Su, Y.-L.; Han, Z.-Y.; Li, Y.-H.; Gong, L.-Z. ACS Catal. 2017, 7, 7917.
[49] Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551.
[50] Cong, X.; Zhai, S.; Zeng, X. Org. Chem. Front. 2016, 3, 673.
/
〈 |
|
〉 |