Study on the Interaction Between Water Radical Cations and Bis(2-hydroxyethyl) Disulfide at Ambient Temperature and Pressure Using Mass Spectrometry
Received date: 2018-07-25
Online published: 2018-08-22
Supported by
Project supported by the National Natural Science Foundation of China (No. 21520102007), the Jiangxi Key Laboratory for Mass Spectrometry and Instru-mentation Open Foundation (No. JXMS201701) and the Research Fund of East China University of Technology (No. DHBK2017114).
In vivo, free radical damage of disulfide bonds in proteins affects the structure and function of proteins, and has an important relationship with cell aging. Therefore, studying the mechanism of the interaction between free radicals and disulfide bonds, and understanding the interaction process between free radicals and disulfide bonds, is important for the cleavage or proteciton of disulfide bond. In this paper, liquid-assisted surface desorption atmospheric pressure chemical ionization technology is adopted (LA-DAPCI), to construct a two-channel ion source device, obtaining high abundance water radical cations (H2O)n+· (n=2~4). Using linear ion trap mass spectrometer, combining with Density Functional Theory, the interaction process between (H2O)n+· and bis(2-hydroxyethyl) disulfide (HEDS) in mass spectrometer and thermodynamic process of the interaction were studied. The results indicated that (H2O)n+· interacted with HEDS, forming a radical complex (M+H2O)+· (m/z 172) without covalent bond, and H2O in complex (M+H2O)+· (m/z 172) is derived from (H2O)n+·, not from the H2O of sample solution. Furthermore, thermodynamic theoretical calculation results demonstrated that H on the β-hydroxyl group of HEDS structure forms a weak hydrogen bond with S in the form of an intramolecular five-membered ring. During the interaction process, (H2O)n+· preferentially binds to the hydroxyl group of HEDS, forming a radical complex (M+H2O)+·, whose disulfide bond will be difficult to be cleaved. In conclusion, the β-hydroxyl group has a protective effect on the disulfide bond of HEDS during the interaction with water radical cations.
Gao Xiao-Fei , He Peng , Chen Huanwen . Study on the Interaction Between Water Radical Cations and Bis(2-hydroxyethyl) Disulfide at Ambient Temperature and Pressure Using Mass Spectrometry[J]. Acta Chimica Sinica, 2018 , 76(10) : 802 -806 . DOI: 10.6023/A18070297
[1] Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Chem. Rev. 2014, 114, 901.
[2] Nicastri, M. C.; Xega, K.; Li, L. Y.; Xie, J.; Wang, C. Y.; Linhardt, R. J.; Reitter, J. N.; Mills, K. V. Biochemistry 2013, 52, 5920.
[3] Stoyanovsky, D. A.; Maeda, A.; Atkins, J. L.; Kagan, V. E. Anal. Chem. 2011, 83, 6432.
[4] Cheng, Q.; Evangelista, F. A.; Simmonett, A. C.; Yamaguchi, Y.; Schaefer, H. F. J. Phys. Chem. A 2009, 113, 13779.
[5] Mizuse, K.; Kuo, J.-L.; Fujii, A. Chem. Sci. 2011, 2, 868.
[6] Pan, P.-R.; Lin, Y.-S.; Tsai, M.-K.; Kuo, J.-L.; Chai, J.-D. Phys. Chem. Chem. Phys. 2012, 14, 10705.
[7] Nicastri, M. C.; Xega, K.; Li, L. Y.; Xie, J.; Wang, C. Y.; Linhardt, R. J.; Reitter, J. N.; Mills, K. V. Biochemistry 2013, 52, 5920.
[8] Tyson, E. L.; Ament, M. S.; Yoon, T. P. J. Org. Chem. 2013, 78, 204.
[9] Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Chem. Rev. 2014, 114, 901.
[10] Tang, M.; Hu, C.-E.; Lv, Z.-L.; Chen, X.-R.; Cai, L.-C. J. Phys. Chem. A 2016, 120, 9489.
[11] Ma, J.; Wang, F.; Mostafavi, M. Molecules 2018, 23, 244.
[12] de Visser, S. P.; de Koning, L. J.; Nibbering, N. M. M. J. Phys. Chem. 1995, 99, 15444.
[13] Ouyang, Y.; Hong, F.; Jia, B.; Chen, H. CN203448088U, 2014. (欧阳永中, 洪峰, 贾斌, 陈焕文, CN 203448088U, 2014-02-26.)
[14] Ouyang, Y.; Jia, B.; Chen, L.; Chen, H. The 11th National Biomedical Chromatography and Related Technology Exchange Conference, Chinese Chemical Society, Jinggangshan, 2016, p. 49(in Chinese). (欧阳永中, 贾斌, 陈林飞, 陈焕文, 中国化学会第十一届全国生物医药色谱及相关技术交流会, 中国化学会, 井冈山, 2016, p. 49.)
[15] Zhu, Z.; Han, J.; Zhang, Z.; Zhou, Y.; Xu, N.; Zhang, B.; Gu, H.; Chen, H. Rapid Commun. Mass Spectrom. 2012, 26, 2770.
[16] Yang, S.; Ding, J.; Zheng, J.; Hu, B.; Li, J.; Chen, H.; Zhou, Z.; Qiao, X. Anal. Chem. 2009, 81, 2426.
[17] Chen, H.; Yang, S.; Wortmann, A.; Zenobi, R. Angew. Chem. Int. Ed. 2007, 46, 7591.
[18] Chen, H.; Zenobi, R. Nat. Protoc. 2008, 3, 1467.
[19] Zhang, J.; Wang, H.; Xue, X.; Zhang, Y.; Cheng, X. Acta Chim. Sinica 2012, 70, 2543. (张吉东, 王海锋, 薛新英, 张岩文, 程新路, 化学学报, 2012, 70, 2543).
[20] Chai, Y.; Gan, S.; Pan, Y. Acta Chim. Sinica 2012, 70, 1805(柴云峰, 甘世凤, 潘远江, 化学学报, 2012, 70, 1805).
[21] Zheng, Y.; Zhu, Q.; Li, Z.; Li, X. Acta Chim. Sinica 2013, 71, 81. (郑洋, 朱权, 李泽荣, 李象远, 化学学报, 2013, 71, 81).
/
〈 |
|
〉 |