Article

Efficient and Facile Synthesis of Chiral Sulfonamides via Asymmetric Multicomponent Reactions

  • Yu Sifan ,
  • Fu Xiang ,
  • Liu Gengxin ,
  • Qiu Huang ,
  • Hu Wenhao
Expand
  • School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006

Received date: 2018-06-11

  Online published: 2018-08-24

Supported by

Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06Y337).

Abstract

Sulfonamide is a key structural unit of several groups of vitally synthetic drugs that have been extensively used as antimicrobials, antiretroviral drugs and anticancer agents. In particular, enantiomerically pure sulfonamides represent a rapidly-increasing important substance in new drug discovery due to their unique pharmacological properties. Thus, developing asymmetric synthetic methods involving rapid and highly efficient construction of these compounds is extremely important and highly demanded for medicinal chemists. In our laboratory, we have reported a serial of asymmetric multicomponent reactions via trapping reactive ammonium ylides generated from amines and diazo compounds in the presence of transition metal complexes and chiral phosphoric acids. In this work, an asymmetric three-component reaction of sulfonamides, diazo compounds and imines cooperatively catalyzed by Rh2(OAc)4 and chiral phosphoric acids was reported. This Rh2(OAc)4 and chiral phosphoric acids cooperatively catalyzed three-component reaction of sulfonamides, diazo compounds and imines accomplished with satisfying yields (up to 85%), high diastereoselectivity (>20:1) and excellent enantioselectivity (up to 99% ee), thus providing a rapid access to synthesize enantiomerically enriched sulfonamides bearing two adjacent chiral carbons. Furthermore, this newly developed three-component reaction was carried out on a gram-scale with a lower catalyst loading and without impacting the yield, diastereoselectivity and enantioselectivity. Finally, we explored the further transformation of obtained three-component reaction products:1) treatment of 5aaa with LiAlH4 under 0℃ in THF for 8.0 h gave the corresponding alcohol derivative 6 in 82% yield without changing the diastereoselectivity and enantioselectivity (0.20 mmol scale); 2) treatment of 5aaa with triphosgene and triethylamine under 0℃ in DCM for 1.0 h, gave five-membered heterocyclic sulfoximine derivative 7 bearing three adjacent chiral atoms (2 carbons and 1 sulfur) in 80% yield with perfect diastereoselectivity (>20:1) and remained enantioselectivity (0.20 mmol scale).

Cite this article

Yu Sifan , Fu Xiang , Liu Gengxin , Qiu Huang , Hu Wenhao . Efficient and Facile Synthesis of Chiral Sulfonamides via Asymmetric Multicomponent Reactions[J]. Acta Chimica Sinica, 2018 , 76(11) : 895 -900 . DOI: 10.6023/A18060228

References

[1] (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
(b) Dai, H.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.; Yu, J. J. Am. Chem. Soc. 2011, 133, 7222.
(c) Laha, J. K.; Dayal, N.; Jethava, K. P.; Prajapati, D. V. Org. Lett. 2015. 17, 1296.
(d) Deng, Y.; Li, B.; Zhang, T. Environ. Sci. Technol. 2018, 52, 3854.
(e) Ran, Y.; Yang, Y.; You, H.; You, J. ACS Catal. 2018, 8, 1796.
[2] (a) Supuran, C. T.; Casini, A.; Scozzafava, A. Med. Res. Rev. 2003, 23, 535.
(b) Shah, S. S. A.; Rivaera, G.; Ashfaq, M. Mini-Rev. Med. Chem. 2013, 13, 70.
(c) Noreljaleel, A. E. M.; Wilhelm, A.; Bonnet, S. L.; van der Westhuizen, J. H. J. Nat. Prod. 2018, 81, 41.
(d) Cheng, H.; Wang, W.; Huang, L.; Cui, P.; Wu, Q. Chin. J. Org. Chem. 2016, 36, 1065. (程华, 汪万强, 黄琳, 崔萍, 吴琼友, 有机化学, 2016, 36, 1065.).
(e) Liu, Q.; Fang, P.; Zhao, Z.; Zhang, H.; Zhou, C. Chin. J. Org. Chem. 2017, 37, 3146. (刘庆龙, 房鹏金, 赵志龙, 张慧珍, 周成合, 有机化学, 2017, 37, 3146.)
[3] (a) Yang, D.; Yan, J.; Song, X.; Zhang, W.; Tang, X.; Chen, X.; Fan, L. Acta Chim. Sinica 2010, 68, 515. (杨大成, 晏菊芳, 宋小礼, 张蔚瑜, 唐雪梅, 陈欣, 范莉, 化学学报, 2010, 68, 515.)
(b) Wallach, D. R.; Chisholm, J. D. J. Org. Chem. 2016, 81, 8035.
(c) Orain, D.; Tasdelen, E.; Haessig, S.; Koller, M.; Picard, A.; Dubois, C.; Lingenhoehl, K.; Desrayaud, S.; Urwyler, S.; Kallen, J.; Mattes, H. ChemMedChem 2017, 12, 197.
(d) Wei, M.; Gao, X.; Zhang, H.; Li, X. Chin. J. Org. Chem. 2015, 35, 439. (魏梦雪, 高晓慧, 张和, 李学强, 有机化学, 2015, 35, 439.)
(e) Hua, Y.; He, B.; Qin, Z.; Wang, S.; Liu, H.; Liu, F. Chin. J. Org. Chem. 2018, 38, 1147. (华迎春, 贺斌, 秦之焱, 王松, 刘慧萍, 刘丰五, 有机化学, 2018, 38, 1147.).
[4] (a) Rocheblave, L.; Bihel, F.; De Michelis, C.; Priem, G.; Courcambeck, J.; Bonnet, B.; Chermann, J. C.; Kraus, J. L. J. Med. Chem. 2002, 45, 3321.
(b) Kovalevsky, A. Y.; Ghosh, A. K.; Weber, I. T. J. Med. Chem. 2008, 51, 6599.
(c) Gerlits, O. O.; Keen, D. A.; Blakeley, M. P.; Louis, J. M.; Weber, I. T.; Kovalevsky, A. Y. J. Med. Chem. 2017, 60, 2018.
[5] (a) Blacklock, T. J.; Sohar, P.; Butcher, J. W.; Lamanec, T.; Grabowski, E. J. J. J. Org. Chem. 1993, 58, 1672.
(b) Huang, Q.; Rui, E. Y.; Cobbs, M.; Dinh, D. M.; Gukasyan, H. J.; Lafontaine, J. A.; Mehta, S.; Patterson, B. D.; Rewolinski, D. A.; Richardson, P. F.; Edwards, M. P. J. Med. Chem. 2015, 58, 2821.
(c) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed, 2015, 54, 3121.
(d) Fu, J.; Sun, F.; Liu, W.; Liu, W.; Gedam, M.; Hu, Q.; Fridley, C.; Quigley, H. A.; Hanes, J.; Pitha, I. Mol. Pharmaceutics. 2016, 13, 2987.
[6] (a) Poole, R. M. Drugs 2014, 74, 1559.
(b) Scola, P. M.; Sun, L.; Wang, A. X.; Chen, J.; Sin, N.; Venables, B. L.; Sit, S.; Chen, Y.; Cocuzza, A.; Bilder, D.; Zhang, B.; Hewawasam, P.; Tu, Y.; Friborg, J.; Falk, P.; Hernandez, D.; Levine, S.; Chen, C.; Yu, F.; Zvyaga, T.; Good, A. C.; Rajamani, R.; Kish, K.; Tredup, J.; Klei, H. E.; Gao, Q.; Mueller, L.; Colonno, R. J.; Grasela, D. M.; Shi, H.; Sun, L.; Warner, W.; Li, D.; Zhu, J.; Meanwell, N. A.; McPhee, F. J. Med. Chem. 2014, 57, 1730.
(c) Zheng, B.; D'Andrea, S. V.; Sun, L. ACS Med. Chem. Lett. 2018, DOI:10. 1021/acsmedchemlett. 7b00503.
[7] (a) Combs, A. P.; Zhu, W.; Crawley, M. L.; Glass, B.; Polam, P.; Sparks, R. B.; Modi, D.; Takvorian, A.; McLaughlin, E.; Yue, E. W.; Wasserman, Z.; Bower, M.; Wei, M.; Rupar M.; Ala, P. J.; Reid, B. M.; Ellis, B.; Gonneville, L.; Emm, T.; Taylor, N.; Yeleswaram, S.; Li, Y.; Wynn, R.; Burn, T. C.; Hollis, G.; Liu, P. C. C.; Metcalf, B. J. Med. Chem. 2006, 49, 3774.
(b) Liu, p.; Lanza, T. J.; Chioda, M.; Jones, C.; Chobanian, H. R.; Guo, Y.; Chang, L.; Kelly, T. M.; Kan, Y.; Wang, S.; Strack, A. M.; Miller, R.; Pang, J.; Lyons, K.; Dragovic, J.; Ning, J. G.; Schafer, W. A.; Welch, C. J.; Gong, X.; Gao, Y.; Hornak, V.; Ball, R. G.; Tsou, N.; Reitman, M. L.; Wyvratt, M. J.; Nargund, R. P.; Lin, L. S. ACS Med. Chem. Lett. 2011, 2, 933.
(c) Maso, M. J. D.; Nepomuceno, G. M.; Peter, M. A. S.; Gitre, H. H.; Martin, K. S.; Shaw, J. T. Org. Lett. 2016, 18, 1740.
(d) Rajkumar, S.; Clarkson, G. J.; Shipman, M. Org. Lett. 2017, 19, 2058.
(e) Li, K.; Weber, A. E.; Tseng, L.; Malcolmson, S. J. Org. Lett. 2017, 19, 4239.
[8] (a) Zhong, F.; Wang, Y.; Han, X.; Huang, K.; Lu, Y. Org. Lett. 2011, 13, 1310.
(b) Turnpenny, T. W.; Hyman, K. L.; Chemler, S. R. Organometallics 2012, 31, 7819.
(c) Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870.
(d) Beisel, T.; Diehl, A. M.; Manolikakes, G. Org. Lett. 2016, 18, 4116.
(e) Dydio, P.; Key, H. M.; Hayashi, H.; Clark, D. S.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 1750.
(f) Mennie, K. M.; Banik, S. M.; Reichert, E. C.; Jacobsen, E. N. J. Am. Chem. Soc. 2018, 140, 4797.
[9] (a) Graaff, C. D.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969.
(b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
(c) Zhang, D.; Hu, W. Chem. Rec. 2017, 17, 739.
[10] (a) Su, Y.; Shi, F. Chin. J. Org. Chem. 2010, 30, 486. (苏亚军, 史福强, 有机化学, 2010, 30, 486).
(b) Zhang, Z.; Tao, Z.; Arafate, A.; Gong, L. Acta Chim. Sinica 2017, 75, 1196. (张子競, 陶忠林, 阿拉法特·阿地力, 龚流柱, 化学学报, 2017, 75, 1196.)
(c) Smalley, A. P.; Cuthbertson, J. D.; Gaunt, M. J. J. Am. Chem. Soc. 2017, 139, 1412.
(d) Jin, J.; Zhao, Y.; Gouranourimi, A.; Ariafard, A.; Chan, P. J. Am. Chem. Soc. 2018, 140, 5834.
(e) Wu, P.; Wu, J.; Wang, J.; Mei, G. Chin. J. Org. Chem. 2018, 38, 1251. (伍平, 吴迦勒, 王静怡, 梅光建, 有机化学, 2018, 38, 1251.)
(f) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(g) Terada, M. Synthesis 2010, 1929.
(h) Yu, J.; Shi, F.; Gong, L. Acc. Chem. Res. 2011, 44, 1156.
(i) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
[11] (a) Tang, M.; Xing, D.; Cai, M.; Hu, W. Chin. J. Org. Chem. 2014, 34, 1268. (唐敏, 邢栋, 蔡茂强, 胡文浩, 有机化学, 2014, 34, 1268.)
(b) Liu, L.; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1117. (刘路, 张俊良, 有机化学, 2017, 37, 1117.)
(c) Xia, Y.; Qiu, D.; Wang, J. Chem. Rev. 2017, 117, 13810.
(d) Gao, Y.; Wang, J. Chin. J. Org. Chem. 2018, 38, 1275. (郜云鹏, 王剑波, 有机化学, 2018, 38, 1275.)
(e) Cheng, Q.; Xu, H.; Zhu, S.; Zhou, Q. Acta Chim. Sinica 2015, 73, 326. (程清卿, 许唤, 朱守非, 周其林, 化学学报, 2015, 73, 326.)
(f) Tang, Y.; Xu, J.; Yang, J.; Lin, L.; Feng, X.; Liu, X. Chem. 2018, 4, 1658.
(g) Yang, J.; Ke, C.; Zhang, D.; Liu, X.; Feng, X. Org. Lett. 2018, 20, 4536.
[12] (a) Wang, Y.; Zhu, Y.; Chen, Z.; Mi, A.; Hu, W.; Doyle, M. P. Org. Lett. 2003, 5, 3923.
(b) Wang, Y.; Chen, Z.; Mi, A.; Hu, W. Chem. Commun. 2004, 2486.
(c) Jiang, J.; Xu, H.; Xi, J.; Ren, B.; Lv, F.; Guo, X.; Jiang, L.; Zhang, Z.; Hu, W. J. Am. Chem. Soc. 2011, 133, 8428.
(d) Jiang, L.; Zhang, D.; Wang, Z.; Hu, W. Synthesis 2013, 45, 452.
(e) Ren, L.; Lian, X.; Gong, L. Chem. Eur. J. 2013, 19, 3315.
(f) Ma, X.; Jiang, J.; Lv, S.; Yao, W.; Yang, Y.; Liu, S.; Xia, F.; Hu, W. Angew. Chem., Int. Ed. 2014, 53, 13136.
(g) Jiang, J.; Ma, X.; Liu, S.; Qian, Y.; Lv, F.; Qiu, L.; Wu, X.; Hu, W. Chem. Commun. 2013, 49, 4238.
(h) Lei, R.; Wu, Y.; Dong, S.; Jia, K.; Liu, S.; Hu, W. J. Org. Chem. 2017, 82, 2862.
[13] http://ccc.chem.pitt.edu/wipf/MechOMs/evans_pKa_table.pdf
[14] Qiu, H.; Li, M.; Jiang, L.; Lv, F.; Zan, L.; Zhai, C.; Doyle, M.; Hu, W. Nat. Chem. 2012, 4, 733.
[15] (a) Wang, Y.; Hong, X.; Deng, Z. Chin. J. Org. Chem. 2012, 32, 825. (王娅娅, 洪学传, 邓子新, 有机化学, 2012, 32, 825.)
(b) Kahraman, M.; Sinishtaj, S.; Dolan, P. M.; Kensler, T. W.; Peleg, S.; Saha, U.; Chuang, S. S.; Bernstein, G.; Korczak, B.; Posner, G. H. J. Med. Chem. 2004, 47, 6854.
(c) Peraino, N. J.; Wheeler, K. J.; Kerrigan, N. J. Org. Lett. 2015, 17, 1735.
(d) Goldberg, F. K.; Kettle, J. G.; Xiong, J.; Lin, D. Tetrahedron 2014, 70, 6613.
[16] (a) Okamura, H.; Bolm, C. Org. Lett. 2004, 6, 1305.
(b) Aithagani, S. K.; Dara, S.; Munagala, G.; Aruri, H.; Yadav, M.; Sharma, S.; Vishwakarma, R. A.; Singh, S. P. Org. Lett. 2015, 17, 5547.
[17] Dong, S.; Frings, M.; Cheng, H.; Wen, J.; Zhang, D.; Raabe, G.; Bolm, C. J. Am. Chem. Soc. 2016, 138, 2166.
[18] Kang, Z.; Zhang, D.; Shou, J.; Hu, W. Org. Lett. 2018, 20, 983.

Outlines

/