Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries
Received date: 2018-07-16
Online published: 2018-08-31
Supported by
Project supported by the National Natural Science Foundation of China (No. 51272155).
In the area of novel power sources, silicon anode in lithium-ion battery, with an ultrahigh theoretical specific capacity of 4200 mAh·g-1, has drawn numerous attentions and got to highlighting spot. Nevertheless, it suffers rapid capacity loss and short cyclability ascribed to the huge volume change during lithiation/delithiation process. So far, one of the most effective methods to ameliorate performances of silicon anode is to modify binders. In this way, the contact integrity among active materials, conductive additives and current collectors can be maintained, which may weaken the cracking and pulverization, keep high specific capacity as well as strengthen the cyclability of silicon anode. Considering both the advantages of silicon anode and the developments of binders, a review on silicon anode in lithium-ion battery will be demonstrated systematically. Besides, we describe the main effects of binders against battery performances. We hope that our review would provide research directions in the developments and applications of binders used in silicon anode of lithium-ion battery.
Key words: lithium-ion batteries; anode materials; silicon anodes; binder
Wang Xiaoyu , Zhang Yu , Ma Lei , Wei Liangming . Recent Development on Binders for Silicon-Based Anodes in Lithium-Ion Batteries[J]. Acta Chimica Sinica, 2019 , 77(1) : 24 -40 . DOI: 10.6023/A18070272
[1] Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
[2] Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
[3] Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energ. Environ. Sci. 2011, 4, 3243.
[4] Huggins, R. A.; Boukamp, B. A. J. Electrochem. Soc. 1984, 128, 725.
[5] Li, J.; Yang, C.; Zhang, J.; Zhang, X.; Xia, B. Acta Chim. Sinica 2010, 68, 646(in Chinese). (李佳, 杨传铮, 张建, 张熙贵, 夏保佳, 化学学报, 2010, 68, 646.)
[6] Zhao, L. J.; Zhao, Q.; Niu, Z. Q.; Liang, J.; Tao, Z. L.; Chen, J. Chinese J. Inorg. Chem. 2016, 32, 929.
[7] Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nat. Mater. 2005, 4, 366.
[8] Sharma, R. A. J. Electrochem. Soc. 1976, 123, 1763.
[9] Seefurth, R. N.; Sharma, R. A. J. Electrochem. Soc. 1977, 124, 1207.
[10] Hatchard, T. D.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A838.
[11] Deshpande, R.; Cheng, Y.-T.; Verbrugge, M. W. J. Power Sources 2010, 195, 5081.
[12] Kamali, A. R.; Fray, D. J. J. New Mater. Electrochem. Syst. 2010, 13, 147.
[13] Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Chem. Soc. Rev. 2010, 39, 3115.
[14] Zhang, W.-J. J. Power Sources 2011, 196, 13.
[15] Wu, H.; Cui, Y. Nano Today 2012, 7, 414.
[16] Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Nano Lett. 2009, 9, 3844.
[17] Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U. Nano Lett. 2010, 10, 1710.
[18] Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y. Nat. Nanotechnol. 2012, 7, 310.
[19] Chen, W.; Lei, T.; Qian, T.; Lv, W.; He, W.; Wu, C.; Liu, X.; Liu, J.; Chen, B.; Yan, C.; Xiong, J. Adv. Energy Mater. 2018, 8, 1702889.
[20] Shi, F.; Song, Z.; Ross, P. N.; Somorjai, G. A.; Ritchie, R. O.; Komvopoulos, K. Nat. Commun. 2016, 7, 11886.
[21] Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279.
[22] Ryu, J. H.; Kim, J. W.; Sung, Y.-E.; Oh, S. M. Electrochem. Solid-State Lett. 2004, 7, A306.
[23] Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137.
[24] Timmons, A.; Dahn, J. R. J. Electrochem. Soc. 2006, 153, A1206.
[25] Verbrugge, M. W.; Cheng, Y.-T. J. Electrochem. Soc. 2009, 156, A927.
[26] Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Nano Lett. 2012, 12, 904.
[27] Yen, Y.-C.; Chao, S.-C.; Wu, H.-C.; Wu, N.-L. J. Electrochem. Soc. 2009, 156, A95.
[28] Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z. Small 2018, 14, 1702737.
[29] Peng, B.; Cheng, F.; Tao, Z.; Chen, J. J. Chem. Phys. 2010, 133, 034701.
[30] Wilson, A. M.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 326.
[31] Yang, J.; Winter, M.; Besenhard, J. O. Solid State Ionics 1996, 90, 281.
[32] Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Adv. Mater. 2007, 19, 4067.
[33] Kang, K.; Song, K.; Heo, H.; Yoo, S.; Kim, G.-S.; Lee, G.; Kang, Y.-M.; Jo, M.-H. Chem. Sci. 2011, 2, 1090.
[34] Hu, L.; Wu, H.; Hong, S. S.; Cui, L.; McDonough, J. R.; Bohy, S.; Cui, Y. Chem. Commun. (Camb) 2011, 47, 367.
[35] Ren, W.; Wang, C.; Lu, L.; Li, D.; Cheng, C.; Liu, J. J. Mater. Chem. A 2013, 1, 13433.
[36] Hong, L.; Huang, X.; Chen, L.; Zhou, G.; Zhang, Z.; Yu, D.; Yu, J. M.; Ning, P. Solid State Ionics 2000, 135, 181.
[37] Bridel, J. S.; Azaïs, T.; Morcrette, M.; Tarascon, J. M.; Larcher, D. Chem. Mater. 2010, 22, 1229.
[38] Du, J.; Lin, N.; Qian, Y. Acta Chim. Sinica 2017, 75, 147(in Chinese). (杜进, 林宁, 钱逸泰, 化学学报, 2017, 75, 147.)
[39] Anani, A.; Huggins, R. A. J. Power Sources 1992, 38, 351.
[40] Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.
[41] Wilson, A. M.; Way, B. M.; Dahn, J. R.; van Buuren, T. J. Appl. Phys. 1995, 77, 2363.
[42] Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M. Adv. Funct. Mater. 2007, 17, 1765.
[43] Zhang, Y.; Zhu, Y.; Fu, L.; Meng, J.; Yu, N.; Wang, J.; Wu, Y. Chin. J. Chem. 2017, 35, 21.
[44] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620(in Chinese). (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
[45] Chen, Z.; Christensen, L.; Dahn, J. R. Electrochem. Commun. 2003, 5, 919.
[46] Li, J.-T.; Wu, Z.-Y.; Lu, Y.-Q.; Zhou, Y.; Huang, Q.-S.; Huang, L.; Sun, S.-G. Adv. Energy Mater. 2017, 7, 1701185.
[47] Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. ACS Appl. Mater. Interfaces 2010, 2, 3004.
[48] Du, L.; Zhuang, Q.; Wei, T.; Shi, Y.; Qiang, Y.; Sun, S. Acta Chim. Sinica 2011, 69, 2641(in Chinese). (杜莉莉, 庄全超, 魏涛, 史月丽, 强颖怀, 孙世刚, 化学学报, 2011, 69, 2641.)
[49] Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Electrochem. Solid-State Lett. 2008, 11, A76.
[50] Kang, Y.-M.; Go, J.-Y.; Lee, S.-M.; Choi, W.-U. Electrochem. Commun. 2007, 9, 1276.
[51] Kim, I.-s.; Blomgren, G. E.; Kumta, P. N. Electrochem. Solid-State Lett. 2004, 7, A44.
[52] Kim, I.-S.; Kumta, P. N. J. Power Sources 2004, 136, 145.
[53] Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A234.
[54] Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. J. Power Sources 2010, 195, 2069.
[55] Santimetaneedol, A.; Tripuraneni, R.; Chester, S. A.; Nadimpalli, S. P. V. J. Power Sources 2016, 332, 118.
[56] Grillet, A. M.; Humplik, T.; Stirrup, E. K.; Roberts, S. A.; Barringer, D. A.; Snyder, C. M.; Janvrin, M. R.; Apblett, C. A. J. Electrochem. Soc. 2016, 163, A1859.
[57] Drofenik, J.; Gaberscek, M.; Dominko, R.; Poulsen, F. W.; Mogensen, M.; Pejovnik, S.; Jamnik, J. Electrochim. Acta 2003, 48, 883.
[58] Lestriez, B.; Bahri, S.; Sandu, I.; Roue, L.; Guyomard, D. Electrochem. Commun. 2007, 9, 2801.
[59] Li, J.; Lewis, R. B.; Dahn, J. R. Electrochem. Solid-State Lett. 2007, 10, A17.
[60] Mazouzi, D.; Lestriez, B.; Roué, L.; Guyomard, D. Electrochem. Solid-State Lett. 2009, 12, A215.
[61] Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J. J. Appl. Electrochem. 2006, 36, 1099.
[62] Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. J. Electrochem. Soc. 2008, 155, A158.
[63] Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Interfaces 2016, 8, 12211.
[64] Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novák, P. J. Power Sources 2006, 161, 617.
[65] Lee, K.; Lim, S.; Go, N.; Kim, J.; Mun, J.; Kim, T. H. Sci. Rep. 2018, 8, 11322.
[66] Liu, Y.; Tai, Z.; Zhou, T.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z.; Liu, H. K. Adv. Mater. 2017, 29, 1703028.
[67] Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B. Electrochim. Acta 2017, 258, 453.
[68] Hays, K. A.; Ruther, R. E.; Kukay, A. J.; Cao, P.; Saito, T.; Wood, D. L.; Li, J. J. Power Sources 2018, 384, 136.
[69] Yabuuchi, N.; Shimomura, K.; Shimbe, Y.; Ozeki, T.; Son, J.-Y.; Oji, H.; Katayama, Y.; Miura, T.; Komaba, S. Adv. Energy Mater. 2011, 1, 759.
[70] Han, Z.-J.; Yabuuchi, N.; Shimomura, K.; Murase, M.; Yui, H.; Komaba, S. Energ. Environ. Sci. 2012, 5, 9014.
[71] Han, Z. J.; Yamagiwa, K.; Yabuuchi, N.; Son, J. Y.; Cui, Y. T.; Oji, H.; Kogure, A.; Harada, T.; Ishikawa, S.; Aoki, Y.; Komaba, S. Phys. Chem. Chem. Phys. 2015, 17, 3783.
[72] Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T. J. Phys. Chem. C 2011, 116, 1380.
[73] Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. J. Phys. Chem. C 2011, 115, 13487.
[74] Kang, S.; Yang, K.; White, S. R.; Sottos, N. R. Adv. Energy Mater. 2017, 7, 1700045.
[75] Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. Angew. Chem. Int. Ed. Engl. 2012, 51, 8762.
[76] Wei, L.; Chen, C.; Hou, Z.; Wei, H. Sci. Rep. 2016, 6, 19583.
[77] Song, J.; Zhou, M.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D.; Yu, Z.; Regula, M.; Wang, D. Adv. Funct. Mater. 2014, 24, 5904.
[78] Lee, K.; Lim, S.; Tron, A.; Mun, J.; Kim, Y.-J.; Yim, T.; Kim, T.-H. RSC Adv. 2016, 6, 101622.
[79] Lee, S.-Y.; Choi, Y.; Hong, K.-S.; Lee, J. K.; Kim, J.-Y.; Bae, J.-S.; Jeong, E. D. Appl. Surf. Sci. 2018, 447, 442.
[80] Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y. Small 2018, e1801189.
[81] Lü, L.; Lou, H.; Xiao, Y.; Zhang, G.; Wang, C.; Deng, Y. RSC Adv. 2018, 8, 4604.
[82] Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T.-H. J. Power Sources 2017, 360, 585.
[83] Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75.
[84] Liu, J.; Zhang, Q.; Wu, Z. Y.; Wu, J. H.; Li, J. T.; Huang, L.; Sun, S. G. Chem. Commun. (Camb) 2014, 50, 6386.
[85] Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Phys. Chem. Chem. Phys. 2014, 16, 25628.
[86] Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036.
[87] Gu, Y.; Yang, S.; Zhu, G.; Yuan, Y.; Qu, Q.; Wang, Y.; Zheng, H. Electrochim. Acta 2018, 269, 405.
[88] Wu, Z.-Y.; Deng, L.; Li, J.-T.; Huang, Q.-S.; Lu, Y.-Q.; Liu, J.; Zhang, T.; Huang, L.; Sun, S.-G. Electrochim. Acta 2017, 245, 371.
[89] Kim, S.; Jeong, Y. K.; Wang, Y.; Lee, H.; Choi, J. W. Adv. Mater. 2018, 30, e1707594.
[90] Kong, L. J.; Li, R. Y.; Yang, Y. Q.; Li, Z. J. RSC Adv. 2016, 6, 76344.
[91] Gendensuren, B.; Oh, E.-S. J. Power Sources 2018, 384, 379.
[92] Ibezim, E. C.; Andrade, C. T.; Marcia, C.; Barretto, B.; Odimegwu, D. C.; Lima, F. F. D. Ibnosina J Med BS. 2011, 3, 77.
[93] Yue, L.; Zhang, L.; Zhong, H. J. Power Sources 2014, 247, 327.
[94] Wu, Z.-H.; Yang, J.-Y.; Yu, B.; Shi, B.-M.; Zhao, C.-R.; Yu, Z.-L. Rare Metals 2016.
[95] Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. ACS Appl. Mater. Interfaces 2018, 10, 16449.
[96] Biwer, A.; Antranikian, G.; Heinzle, E. Appl. Microbiol. Biotechnol. 2002, 59, 609.
[97] Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Nano Lett. 2014, 14, 864.
[98] Kwon, T. W.; Jeong, Y. K.; Deniz, E.; Alqaradawi, S. Y.; Choi, J. W.; Coskun, A. ACS Nano 2015, 9, 11317.
[99] Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; Zhang, S. Nano Energy 2015, 12, 178.
[100] Ling, M.; Zhao, H.; Xiao, X.; Shi, F.; Wu, M.; Qiu, J.; Li, S.; Song, X.; Liu, G.; Zhang, S. J. Mater. Chem. A 2015, 3, 2036.
[101] Liu, J.; Zhang, Q.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G. Adv. Funct. Mater. 2015, 25, 3599.
[102] Dufficy, M. K.; Khan, S. A.; Fedkiw, P. S. J. Mater. Chem. A 2015, 3, 12023.
[103] Kuruba, R.; Datta, M. K.; Damodaran, K.; Jampani, P. H.; Gattu, B.; Patel, P. P.; Shanthi, P. M.; Damle, S.; Kumta, P. N. J. Power Sources 2015, 298, 331.
[104] Chen, D.; Yi, R.; Chen, S.; Xu, T.; Gordin, M. L.; Wang, D. Solid State Ionics 2014, 254, 65.
[105] Jeong, Y. K.; Kwon, T.-w.; Lee, I.; Kim, T.-S.; Coskun, A.; Choi, J. W. Energ. Environ. Sci. 2015, 8, 1224.
[106] Klamor, S.; Schroder, M.; Brunklaus, G.; Niehoff, P.; Berkemeier, F.; Schappacher, F. M.; Winter, M. Phys. Chem. Chem. Phys. 2015, 17, 5632.
[107] Bie, Y.; Yang, J.; Nuli, Y.; Wang, J. J. Mater. Chem. A 2017, 5, 1919.
[108] Yoon, D. E.; Hwang, C.; Kang, N. R.; Lee, U.; Ahn, D.; Kim, J. Y.; Song, H. K. ACS Appl. Mater. Interfaces 2016, 8, 4042.
[109] Zhao, X.; Yim, C.-H.; Du, N.; Abu-Lebdeh, Y. Ind. Eng. Chem. Res. 2018, 57, 9062.
[110] Zhao, H.; Wei, Y.; Wang, C.; Qiao, R.; Yang, W.; Messersmith, P. B.; Liu, G. ACS Appl. Mater. Interfaces 2018, 10, 5440.
[111] Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679.
[112] Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Nat. Commun. 2013, 4, 1943.
[113] Zhao, S.; Yao, C.; Sun, L.; Xian, X. Ionics 2017, 24, 1039.
[114] Shao, D.; Zhong, H.; Zhang, L. ChemElectroChem 2014, 1, 1679.
[115] Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; Nicolosi, V.; Coleman, J. N. ACS Nano 2016, 10, 3702.
[116] Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314.
[117] Wang, L.; Liu, T.; Peng, X.; Zeng, W.; Jin, Z.; Tian, W.; Gao, B.; Zhou, Y.; Chu, P. K.; Huo, K. Adv. Funct. Mater. 2018, 28, 1704858.
[118] Liu, B.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G. Nano Lett. 2013, 13, 3414.
[119] Park, S. J.; Zhao, H.; Ai, G.; Wang, C.; Song, X.; Yuca, N.; Battaglia, V. S.; Yang, W.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2565.
[120] Zhao, Y.; Yang, L.; Zuo, Y.; Song, Z.; Liu, F.; Li, K.; Pan, F. ACS Appl. Mater. Interfaces 2018, 10, 27795.
[121] Park, H.-K.; Kong, B.-S.; Oh, E.-S. Electrochem. Commun. 2011, 13, 1051.
[122] Yook, S.-H.; Kim, S.-H.; Park, C.-H.; Kim, D.-W. RSC Adv. 2016, 6, 83126.
[123] Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. RSC Adv. 2016, 6, 68371.
[124] Jeena, M. T.; Bok, T.; Kim, S. H.; Park, S.; Kim, J. Y.; Park, S.; Ryu, J. H. Nanoscale 2016, 8, 9245.
[125] Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K. J. Power Sources 2013, 244, 521.
[126] Yao, D.; Yang, Y.; Deng, Y.; Wang, C. J. Power Sources 2018, 379, 26.
[127] Choi, N.-S.; Yew, K. H.; Choi, W.-U.; Kim, S.-S. J. Power Sources 2008, 177, 590.
[128] Zhu, X.; Zhang, F.; Zhang, L.; Zhang, L.; Song, Y.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X.; Sun, J.; Liu, Z. Adv. Funct. Mater. 2018, 28, 1705015.
[129] Shan, C.; Wu, K.; Yen, H. J.; Narvaez Villarrubia, C.; Nakotte, T.; Bo, X.; Zhou, M.; Wu, G.; Wang, H. L. ACS Appl. Mater. Interfaces 2018, 10, 15665.
[130] Zhang, Z.; Jiang, Y.; Peng, Z.; Yang, S.; Lin, H.; Liu, M.; Wang, D. ACS Appl. Mater. Interfaces 2017, 9, 32775.
/
〈 |
|
〉 |