Review

Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance

  • Jin Weize ,
  • Lu Guolin ,
  • Li Yongjun ,
  • Huang Xiaoyu
Expand
  • Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-08-17

  Online published: 2018-09-12

Supported by

Project supported by the National Major Scientific Research Project (No. 2015CB931900), the National Science Fund for Distinguished Young Scholars (No. 51825304), the National Major Natural Science Foundation Project (No. 21632009), National Natural Science Foundation Project (Nos. 21674124, 51773222, 51773223), Special Science and Technology Pilot Program of Chinese Academy of Sciences (Class B) (No. XDB20000000), Shanghai Major Basic Research Project (No. 18JC1410600) and Shanghai Scientific and Technological Innovation Project (No. 17DZ1205400).

Abstract

The extreme environment resistance materials can be normally used under severe conditions (e.g. T ≤ -50℃ or T ≥ 200℃, 1000 h exposed to UV light etc.), which common hydrocarbon materials cannot tolerate. It was found that fluorine atoms can effectively enhance the extreme environment resistance property of materials. The reason why fluorine atoms have such ability is mainly due to two key factors:first, fluorine and carbon elements are in the same cycle of the periodic table, the electronegativity of fluorine is large (4.0) and its atomic radius is small; second, polarization of fluorine atom is extremely low. The C-F bond is the strongest chemical single bond (≥ 116 kcal/mol) in which the carbon atom participates. It is a short bond and highly polarized. This paper makes brief introduction to the development and present situation of fluorine-containing materials with extreme environment resistance. In the field of fluorination methods, the history of fluorine chemistry since 1970s, the researches on the formation and fracture of carbon-fluorine bond, the influence of fluorine on the formation of carbon-carbon bond and the related researches on polyfluoro-arylation methods are introduced. This paper also introduces the important results of fluorine-containing materials in lithium isotope extraction, thermo-stable fluoropolymers which can be applied in aviation, aerospace, automobile and other fields, as well as the preparation of high-performance fluorine-containing materials with low dielectric constant in electronic equipment and communication fields. In the future, how to further develop and optimize the fluorine-containing materials with extreme environment resistance and put the research results into large-scale use is the working direction for researchers.

Cite this article

Jin Weize , Lu Guolin , Li Yongjun , Huang Xiaoyu . Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance[J]. Acta Chimica Sinica, 2018 , 76(10) : 739 -748 . DOI: 10.6023/A18080340

References

[1] Bai, C. L.; Liu, M. H. Angew. Chem., Int. Ed. 2013, 52, 2678.
[2] Hiyama, T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. Organofluorine Compounds:Chemistry and Applications, Springer, New York, 2000, pp. 1~272.
[3] Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006, pp. 1~337.
[4] Sharpless, K. B. Efficient Preparations of Fluorine Compounds, Wiley, Hoboken, 2013, pp. I~XI.
[5] Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65.
[6] Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359.
[7] Chen, Q. Y.; Duan, J. X. Tetrahedron Lett. 1993, 34, 4241.
[8] Su, D. B.; Duan, J. X.; Chen, Q. Y. Tetrahedron Lett. 1991, 32, 7689.
[9] Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
[10] Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.
[11] Wang, X. S.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520.
[12] Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134.
[13] Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug Discov. Devel. 2008, 11, 803.
[14] Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.
[15] Sun, H.; Dimagno, S. G. Angew. Chem., Int. Ed. 2006, 45, 2720.
[16] Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 2219.
[17] Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
[18] Liu, W.; Huang, X. Y.; Cheng, M. J.; Nielsen, R. J.; William, A. G. I.; Groves, J. T. Science 2012, 337, 1322.
[19] Yin, F.; Wang, Z.; Li, Z., Li, C. J. Am. Chem. Soc. 2012, 134, 10401.
[20] Chen, H.; Wang, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Org. Chem. Front. 2017, 4, 2403.
[21] Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60(in Chinese). (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.)
[22] Amii, H.; Uneyana, K. Chem. Rev. 2009, 109, 2119.
[23] Aizenberg, M.; Milstein, D. Science 1994, 265, 359.
[24] Peterson, A. A.; McNeill, K. Organometallics 2006, 25, 4938.
[25] Ishii, Y.; Chatani, N.; Yorimitsu, S.; Murai, S. Chem. Lett. 1998, 27, 157.
[26] Bohm, V. P. W.; Gstottmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew. Chem., Int. Ed. 2001, 40, 3387.
[27] Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 21, 2254.
[28] Mongin, F.; Mojovic, L.; Guillamet, B.; Trecourt, C. F.; Queguiner, G. J. Org. Chem. 2002, 67, 8991.
[29] Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.
[30] Widdowson, D. A.; Wilhelm, R. Chem. Commun. 2000, 1, 2211.
[31] Kim, Y.; Yu, S. J. Am. Chem. Soc. 2003, 125, 1696.
[32] Cargill, M. R.; Sanford, G.; Tadeusiak, A. J.; Yufit, D. S.; Howard, J. A.; Kilickiran, P.; Nelles, G. J. Org. Chem. 2010, 75, 5860.
[33] Mikami, K.; Miyamoto, T.; Hatano, M. Chem. Commun. 2004, 2082.
[34] Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.
[35] Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.
[36] Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 19880.
[37] Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
[38] Chu, L. L.; Qing, F. L. J. Am. Chem. Soc. 2010, 132, 7262.
[39] Chu, L. L.; Qing, F. L. Org. Lett. 2010, 12, 5060.
[40] Liu, T. F.; Shen, Q. L. Org. Lett. 2011, 13, 2342.
[41] Liu, T. F.; Shao, X. X.; Wu, Y. M.; Shen, Q. L. Angew. Chem., Int. Ed. 2012, 51, 540.
[42] Prakash, G. K. S.; Hu, J. B. Acc. Chem. Res. 2007, 40, 921.
[43] Zhao, Y. C.; Huang, W. Z.; Zhu, L. G.; Hu, J. B. Org. Lett. 2010, 12, 1444.
[44] Zhou, Q. H.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed. 2013, 52, 3949.
[45] Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese). (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
[46] Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.
[47] Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.
[48] He, C. Y.; Fan, S. L.; Zhang, X. G. J. Am. Chem. Soc. 2010, 132, 12850.
[49] Zhang, X. G.; Fan, S. L.; He, C. Y.; Wan, X.; Min, Q. Q.; Yang, J.; Jiang, Z. X. J. Am. Chem. Soc. 2010, 132, 4506.
[50] Zeng, Y. W.; Zhang, L. J.; Zhao, Y. C.; Ni, C. F.; Zhao, J. W.; Hu, J. B. J. Am. Chem. Soc. 2013, 135, 2955.
[51] Wang, X.; Xu, Y.; Mo, F.; Ji, G. J.; Qiu, D.; Feng, J. J.; Ye, Y. X.; Zhang, S. N.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2013, 135, 10330.
[52] Dai, J. J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z. J.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
[53] Lewis, G. N.; Macdonald, R. T. J. Am. Chem. Soc. 1936, 58, 2519.
[54] Jeon, Y. S.; Jang, N. H.; Kang, B. M.; Jeon, Y. S.; Kim, C. S.; Chio, K. Y.; Ryu, H. Bull. Korean Chem. Soc. 2007, 28, 451.
[55] Kim, D. W. J. Radioanal. Nucl. Chem. 2002, 252, 559.
[56] Takahashi, H.; Zhang, Y. H.; Miyajima, T.; Oi, T. J. Mater. Chem. 2006, 16, 1462.
[57] Kim, D. W.; Kang, B. M.; Jeon, B. K.; Joen, Y. S. J. Radioanal. Nucl. Chem. 2003, 256, 81.
[58] Araki, H.; Umeda, M.; Enokida, Y.; Yamamoto, I. Fusion. Eng. Des. 1998, 39, 1009.
[59] Otake, K.; Suzuki, T.; Kim, H. J.; Nomura, M.; Fujii, Y. J. Nucl. Sci. Technol. 2006, 43, 419.
[60] Black, J. R.; Umeda, G.; Dunn, B.; Mcdonough, W. F.; Kavner, A. J. Am. Chem. Soc. 2009, 131, 9904.
[61] Saleem, M.; Hussain, S.; Rafiq, M.; Baig, M. A. J. Appl. Phys. 2006, 100, 053111-1.
[62] Olivares, I. E.; Duarte, A. E.; Saravia, E. A.; Duarte, F. J. Appl. Opt. 2002, 41, 2973.
[63] Shanghai Institute of Organic Chemistry, CAS. ZL2012104371552, 2012. (中国科学院上海有机化学研究所, ZL2012104371552, 2012.)
[64] Hu, J. B.; Zhang, W.; Zheng, W. Q.; Chen, G. H.; Shi, X.; Xu, Y. C.; Lv, H. G.; Yuan, C. Y. ZL201310239535X, 2013. (胡金波, 张伟, 郑卫琴, 陈光华, 施啸, 徐永昌, 吕红贵, 袁承业, ZL201310239535X, 2013.)
[65] Hu, J. B.; Zhang, W.; Zheng, W. Q.; Shi, X.; Xu, Y. C.; Lv, H. G.; Yuan, C. Y. ZL2013102395326, 2013. (胡金波, 张伟, 郑卫琴, 施啸, 徐永昌, 吕红贵, 袁承业, ZL2013102395326, 2013.)
[66] Shanghai Institute of Organic Chemistry, CAS. PCT/CN2013/075340, 2013.
[67] Hu, J. B.; Zhang, W.; Zheng, W. Q.; Chen, G. H.; Shi, X.; Xu, Y. C.; Lv, H. G.; Yuan, C. Y. PCT/CN2014/074304, 2014.
[68] Hu, J. B.; Zhang, W.; Xu, Y. C.; Gu, H. X. CN2017103408158, 2017. (胡金波, 张伟, 徐永昌, 顾洪熙, CN2017103408158, 2017.)
[69] Hu, J. B.; Zhang, W.; Zhang, L. J. CN2017103398796, 2017. (胡金波, 张伟, 张丽君. CN2017103398796, 2017.)
[70] Hu, J. B.; Zhang, W.; Gu, H. X. Zheng, W. Q. CN2017103398917, 2017. (胡金波, 张伟, 顾洪熙, 郑卫琴, CN2017103398917, 2017.)
[71] Hu, J. B.; Zhang, W.; Zheng, W. Q. Xu, Y. C. CN2017103398936, 2017. (胡金波, 张伟, 郑卫琴, 徐永昌, CN2017103398936, 2017.)
[72] Mahl, A.; Lim, A.; Latta, J.; Yemam, H. A.; Greife, U.; Sellinger, A. Nucl. Instrum. Methods Phys. Res. A 2018, 884, 113.
[73] Babb, D. A.; Ezzell, B. R.; Clement, K. S.; Richey, W. F.; Kennedy, A. P. J. Polym. Sci. Polym. Chem. 1993, 31, 3465.
[74] Zhu, Y. Q.; Huang, Y. G.; Meng, W. D.; Li, H.; Qing, F. L. Polymer 2006, 47, 6272.
[75] Yao, R. X.; Kong, L.; Yin, Z. S.; Qing, F. L. J. Fluorine Chem. 2008, 129, 1003.
[76] Li, Y. J.; Chen, S.; Zhang, S.; Li, Q. N.; Lu, G. L.; Li, W. X.; Liu, H.; Huang, X. Y. Polymer 2009, 50, 5192.
[77] Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223.
[78] Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Polym J. 2006, 38, 79.
[79] Towery, D.; Fury, M. A. J. Electron. Mater. 1998, 27, 1088.
[80] Tsuchiya, K.; Shibasaki, Y.; Aoyagi, M.; Ueda, M. Macromolecules 2006, 39, 3964.
[81] Niu, Y. M.; Zhu, X. L.; Liu, L. Z.; Zhang, Y.; Wang, G. B.; Jiang, Z. H. React. Funct. Polym. 2006, 66, 559.
[82] Dang, T. D.; Mather, P. T.; Alexander, M. D.; Grayson, C. J.; Houtz, M. D.; Spry, R. J.; Arnold, F. E. J. Polym. Sci. Polym. Chem. 2000, 38, 1991.
[83] Fukukawa, K.; Shibasakl, Y.; Ueda, M. Macromolecules 2004, 37, 8256.
[84] Su, Y. C.; Chang, F. C. Polymer 2003, 44, 7989.
[85] Sharangpani, R.; Singh, R. Rev. Sci. Instrum. 1997, 68, 1564.
[86] Rosenmeyer, C. T.; Wu, H. MRS Proceedings 1996, 427, 463.
[87] Luo, Y. J.; Jin, K. K.; He, C. Q.; Wang, J. J.; Sun, J.; He, F. K.; Zhou, J. F.; Wang, Y. Q.; Fang, Q. Macromolecules 2016, 49, 7314.
[88] Wang, J. J.; Sun, J.; Zhou, J. F.; Jin, K. K.; Fang, Q. ACS Appl. Mater. Interfaces 2017, 9, 12782.
[89] Wang, J. J.; Zhou, J. F.; Jin, K. K.; Wang, L.; Sun, J.; Fang, Q. Macromolecules 2017, 50, 9394.
[90] Zhao, Z.; Ni, H.; Han, Z.; Jiang, T.; Xu, Y.; Lu, X.; Ye, P. ACS Appl. Mater. Interfaces 2013, 5, 7808.
[91] Cheng, Y. Acta Polym. Sinica 2017, 8, 1234.
[92] Jha, S. K.; Mishra, V. K.; Sharma, D. K.; Damodaran, T. Rev. Environ. Contam. Toxicol. 2011, 211, 121.
[93] Lau, C.; Butenhoff, J. L.; Rogers, J. M. Toxicol. Appl. Pharm. 2004, 198, 231.
[94] Dewitt, J. C.; Shnyra, A.; Badr, M. Z.; Loveless, S. E.; Hoban, D.; Frame, S. R.; Cunard, R.; Anderson, S. E.; Meade, B. J.; Peden-Adams, M. M.; Luebke, R. W.; Luster, M. I. Crit. Rev. Toxicol. 2009, 39, 76.
[95] Younglai, E. V.; Wu, Y. J.; Foster, W. G. Curr. Pharm. Design 2007, 13, 3005.
[96] Yao, W. Q.; Li, Y. J.; Huang, X. Y. Polymer 2014, 55, 6197.
[97] Tong, L.; Shen, Z.; Zhang, S.; Li, Y. J.; Lu, G. L.; Huang, X. Y. Polymer 2008, 49, 4534.
[98] Wang, X.; Cheng, W. G.; Yang, Q. Y.; Niu, H. Y.; Liu, Q.; Liu, Y.; Gao, M.; Xu, M.; Xu, A.; Liu, S. J.; Huang, X. Y.; Du, Y. G. J. Environ. Sci. 2018, 69, 217.

Outlines

/