High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas
Received date: 2018-07-22
Online published: 2018-09-13
Supported by
Project was supported by the National Natural Science Foundation of China (Nos. 21676094 and 21576058).
In this work, the adsorption performance of 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) for the capture of H2S and CO2 from natural gas mixture (CH4, C2H6, C3H8, H2S and CO2) is calculated by high-throughput screening of grand canonical Monte Carlo (GCMC) simulation in 298 K and 10 bar. For the comprehensive consideration of both adsorption capacities and selectivities of H2S+CO2, first, we compare three different tradeoff methods (α tradeoff method (Tradeoff between SH2S+CO2/C1-C3 and NH2S+CO2, TSN), standard normal method (SNM), β tradeoff method (Tradeoff between selectivity and capacity, TSC)). The effect of selectivity on the new tradeoff variables are appropriately reduced by these tradeoff methods, because some of selectivities are very high. Thus, the new tradeoff variables can comprehensively evaluate the adsorption performance of CoRE-MOFs. Moreover, the correlation of each MOF descriptor (including the largest cavity diameter (LCD), void fraction (φ), surface area (VSA) and isosteric heat (Qst0)) with three tradeoff variables are analyzed by Pearson correlation coefficient, respectively. The LCDs are calculated by Zeo++ software, but the φ and VSA are simulated by RASPA using probes of He and N2, respectively. The Qst0 of each adsorbate gas are calculated at infinite dilution condition using NVT-MC method. All GCMC simulations for the screening are carried out using RASPA software. The results show that TSC has the best correlation with four MOF descriptors and the linear model could sufficiently describe the relationship between TSC and four MOF descriptors. Pearson correlation coefficients of four descriptors were -0.613, -0.717, -0.673 and 0.536 on TSC, respectively. Multiple linear regression is applied to quantitatively determine the influencing degree of four descriptors on performance, respectively. Among the four descriptors, Qst0, φ, and LCD have larger standardized regression coefficients compared with VSA. This indicates that Qst0, φ, and LCD are more useful in describing the performances of the MOFs. Thus, these three descriptors are used in the decision tree modeling to define an effective path for screening high-performance MOFs. It is concluded that a maximum probability (77.6%) of finding the good MOFs can be obtained from the three descriptors. Finally, the 20 best MOFs stand out from the whole database, and find that the alkali or alkaline earth metals in MOFs could effectively enhance the separation performance of H2S and CO2. The microscopic insights and guidelines by this computational study can provide significant theoretical guidance for the development of adsorbent for the purification of natural gas.
Key words: molecular simulation; metal-organic frameworks; adsorption; H2S; CO2
Yang Wenyuan , Liang Hong , Qiao Zhiwei . High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas[J]. Acta Chimica Sinica, 2018 , 76(10) : 785 -792 . DOI: 10.6023/A18070293
[1] Shahbaz, M.; Lean, H. H.; Farooq, A. Renew. Sust. Energy. Rev. 2013, 18, 87.
[2] Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; Zwaan, D. V. B. Int. J. Greenhouse Gas Control 2011, 5, 1614.
[3] Wu, J. R.; Mao, H. Y. Nat. Gas. Ind. 2011, 31, 99. (吴基荣, 毛红艳, 天然气工业, 2011, 31, 99.)
[4] Yang, T. T.; Xiong, Y. T.; Cui, R. H.; Xiao, J.; Han, S. Y. Nat. Gas & Oil 2013, 31, 40. (杨婷婷, 熊运涛, 崔荣华, 肖俊, 韩淑怡, 天然气与石油, 2013, 31, 40.)
[5] Fan, H.; Chen, L. J.; Zhao, H.; Zeng, J.; Sun, W. C.; Hu, K. N. Nat. Gas. Ind. 2011, 36, 34. (樊辉, 陈陆建, 赵红, 甑建, 孙文成, 胡康宁, 天然气化工, 2011, 36, 34.)
[6] Wang, J.; Zhang, X. P.; Li, E. T.; Ma, L.; Wang, S. L. J. Changzhou Univ. 2013, 25, 88. (王剑, 张晓萍, 李恩田, 马路, 王树立, 常州大学学报, 2013, 25, 88.)
[7] Zhang, X. D.; Li, H. X.; Hou, F. L.; Dong, H.; Zhu, Z.; Cui, L. F. J. Funct. Mater. 2016, 47, 8178. (张晓东, 李红欣, 侯扶林, 董寒, 朱正, 崔立峰, 功能材料, 2016, 47, 8178.)
[8] Palomino, M.; Corma, A.; Rey, F.; Valencia, S. Langmuir 2010, 26, 1910.
[9] Shah, M. S.; Tsapatsis, M.; Siepman, J. I. Angew. Chem. 2016, 128, 6042.
[10] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 44, 974.
[11] Zhang, X. F.; An, X. H.; Liu, D. H.; Yang, Q. Y.; Yang, Z. H.; Zhong, C. L.; Lu, X. H. Acta Chim. Sinica 2011, 69, 84. (张秀芳, 安晓辉, 刘大欢, 阳庆元, 杨祝红, 仲崇立, 陆小华, 化学学报, 2011, 69, 84.)
[12] Zhou, J. H.; Zhao, H. L.; Hu, J.; Liu, H. L.; Hu, Y. CIESC J. 2014, 65, 1680. (周建海, 赵会玲, 胡军, 刘洪来, 胡英, 化工学报, 2014, 65, 1680.)
[13] Mu, W.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. Acta Phys.-Chim. Sin. 2010, 26, 1657. (穆韡, 刘大欢, 阳庆元, 仲崇立, 物理化学学报, 2010, 26, 1657.)
[14] Wu, X. J.; Zhao, P.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043. (吴选军, 赵鹏, 王杰, 刘保顺, 蔡卫权, 物理化学学报, 2014, 30, 2043.)
[15] Zhou, Z. E.; Xue, C. Y.; Yang, Q. Y.; Zhong, C. L. Acta Chim. Sinica 2009, 67, 477. (周子娥, 薛春瑜, 阳庆元, 仲崇立, 化学学报, 2009, 67, 477.)
[16] Qiao, Z. W.; Wang, N. Y.; Jiang, J. W.; Zhou, J. Chem. Commun. 2015, 52, 974.
[17] Wu, P.; He, C.; Wang, J.; Peng, X. J. Am. Chem. Soc. 2012, 134, 14991.
[18] Kong, G. Q.; Ou, S.; Zou, C.; Wu, C. D. J. Am. Chem. Soc. 2012, 134, 19851.
[19] Zhang, Z. M.; Yang, J. F.; Chen, Y.; Wang, Y.; Li, L. B.; Li, J. P. CIESC J. 2015, 66, 3549. (张倬铭, 杨江峰, 陈杨, 王勇, 李立博, 李晋平, 化工学报, 2015, 66, 3549)
[20] Han, S. Y.; Fan, W. D.; Gao, L.; Cao, Y. X.; Sun, D. F. Chem. Eng. Oil Gas. 2017, 46, 51. (韩素英, 范卫东, 高荔, 曹运祥, 孙道峰, 石油与天然气化工, 2017, 46, 51.)
[21] Wang, S.; Wu, D.; Huang, H.; Yang, M.; Tong, M.; Liu, D.; Zhong, C. L. Chin. J. Chem. Eng. 2015, 23, 1291.
[22] Joshi, J.; Zhu, G.; Lee, J. J.; Carter, E. A.; Jones, C. W. Langmuir 2018, 34, 8443.
[23] Belmabkhout, Y.; Pillai, R. S.; Alezi, D.; Shekhah, O.; Bhatt, P. M.; Chen, Z.; Adil, K.; Vaesen, S.; Weireld, G. D.; Pang, M.; Suetin, M.; Cairns, A. J.; Solovyeva, V.; Shkurenko, A.; Tall, O. E.; Maurin, G.; Eddaoudi, M. J. Mater. Chem. A 2017, 5, 3293.
[24] Bhatt, P. M.; Belmabkhout, Y.; Assen, A. H.; Weselinski, L. J.; Jiang, h.; Cadiau, A.; Xue, D. X.; Eddaoudi, M. Chem. Eng. J. 2017, 324, 392.
[25] Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.
[26] Wu, D.; Wang, C. C.; Liu, B.; Liu, D.; Yang, Q. Y.; Zhong, C. L. AIChE J. 2012, 58, 2078.
[27] Liu, B.; Smit, B. J. Phys. Chem. C 2016, 114, 8515.
[28] Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303. (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
[29] Actintas, C.; Avci, G.; Daglar, H.; Gulcay, E.; Erucar, L.; Keskin, S. J. Mater. Chem. A 2018, 6, 5836.
[30] Xu, H.; Tong, M. M.; Wu, D.; Xiao, G.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. Acta Phys.-Chim. Sin. 2015, 31, 41. (许红, 童敏曼, 吴栋, 肖刚, 阳庆元, 刘大欢, 仲崇立, 物理化学学报, 2015, 31, 41.)
[31] Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849.
[32] James, L. Technometrics 1983, 26, 415.
[33] Qiao, Z. W.; Peng, C. W.; Zhou, J.; Jiang, J. W. J. Mater. Chem. A 2016, 4, 15904.
[34] Qiao, Z. W.; Xu, Q.; Jiang, J. W. J. Membr. Sci. 2018, 551, 47.
[35] Glover, T. G.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghil, O. Chem. Eng. Sci. 2011, 66, 163.
[36] Herm, Z. R.; Snisher, J. A.; Smit, B.; Krishna, R.; Long, J. R. J. Am. Chem. Soc. 2011, 133, 5664.
[37] Chung, Y. G.; Camp, J.; Haranczy, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yidirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.
[38] http://gregchung.github.io/CoRE-MOFs/.
[39] Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
[40] Dubbeldam, D.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2016, 42, 81.
[41] Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83.
[42] Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys.-Chim. Sin. 2013, 29, 2207. (吴选军, 郑佶, 李江, 蔡卫权, 物理化学学报, 2013, 29, 2207.)
[43] Rappe, A. K.; Casewit, C. J.; Colwell, K. S. Ⅲ, W. A. G.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
[44] Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.
[45] And, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
[46] Qiao, Z. W.; Xu, Q.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.
[47] Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. J. Phys. Chem. B 2015, 119, 7041.
[48] Ewald, P. P. Ann. Phys. 1921, 369, 253.
/
〈 |
|
〉 |