Preparation and Photocatalytic Activity of Fe-ZrO2 Composites from UiO-66 Precursor under Visible Light Irritation
Received date: 2018-09-06
Online published: 2018-10-10
Supported by
Project supported by the National Natural Science Foundation of China (No. 21563026), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R56), and the Innovation Team Basic Scientific Research Project of Gansu Province (No. 1606RJIA324).
A new porous crystalline materials Zr-containing organic framework of UiO-66 has a large specific surface area, strong adsorption capacity, and the highly ordered arrangement of metal ions in its crystal structure. In this study, because UiO-66 has a good structural features, Fe-doped nano-ZrO2 photocatalyst of Fe-ZrO2 were successfully prepared by the adsorption of Fe3+ onto UiO-66, and calcination of the precursor of Fe3+/UiO-66, subsequently. The morphology and structure of the catalyst were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy (FT-IR) and UV-Vis absorption spectroscopy (UV-vis DRS). The electrochemical performance of the catalyst was analyzed by fluorescence (PL) and electrochemical impedance spectroscopy. Finally, the photodegradation of rhodamine B solution by the catalysis of Fe-ZrO2 was studied. The results showed that the degradation rate of rhodamine B (RhB) under visible light irritation was 83% in 120 min with the catalyst of Fe-ZrO2 from the calcination of the precursor Fe3+/UiO-66. The catalyst has a promising stability. The degradation rate to RhB could still reach 78% after three cycles.
Key words: UiO-66; Fe-ZrO2; visible-light photocatalysis; RhB; photodegradation
Ma Yali , Liu Ruxue , Meng Shuangyan , Niu Litong , Yang Zhiwang , Lei Ziqiang . Preparation and Photocatalytic Activity of Fe-ZrO2 Composites from UiO-66 Precursor under Visible Light Irritation[J]. Acta Chimica Sinica, 2019 , 77(2) : 153 -159 . DOI: 10.6023/A18090372
[1] Li, X. X.; Wan, T.; Qiu, J. Y.; Wei, H.; Qin, F. H.; Wang, Y. H.; Liao, Y. J.; Huang, Z. Y.; Tan, X. C. Appl. Catal. B Environ. 2017, 217, 591.
[2] Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Angew. Chem., Int. Ed. 2016, 55, 5414.
[3] Zhao, K.; Zhao, S.; Gao, C.; Qi, J.; Yin, H. J.; Wei, D.; Megasia Feyissa Mideksa, Wang, X. L.; Gao, Y.; Tang, Z.Y.; Yu, R. B. Small 2018, 1800762, 1.
[4] Zhang, J.; Huang, Z. H.; Li, P. D.; Zhang, X. M.; Yuan, Y. Y.; Xu, L. Catal. Sci. Technol. 2017, 7, 2194.
[5] Eonikar, V. G.; Patil, S. S.; Tamboli, M. S.; Ambekar, J. D.; Kulkarni, M.V.; Panmand, R.; Umarji, G. G.; Shinde, M. D.; Rane, S. B.; Munirathnam, N. R.; Patil, D. R.; Kale, B. B. Phys. Chem. Chem. Phys. 2017, 19, 20541.
[6] Zhang, W.; Xu, N. W.; Yao, Z. J.; Li, K.; Zhu, Y.; Chen, L. Y.; Ye, W. L.; Deng, W. Chin. J. Org. Chem. 2016, 36, 2039. (张薇, 徐妮为, 姚子健, 李宽, 朱玉, 陈良艳, 叶文玲, 邓维, 有机化学, 2016, 36, 2039.)
[7] Neppolian, B.; Wang, Q.; Yamashita, H.; Choi, H. Appl. Catal. A Gen. 2007, 333, 264.
[8] Reddy, C. V.; Babu, B.; Reddy, I. N.; Shim, J. Ceram Inter. 2018, 44, 6940.
[9] Jiang, W.; He, J.; Zhong, J. M.; Lu, J. Y.; Yuan, S. J.; Liang, B.; Appl. Surf. Sci. 2014, 307, 407.
[10] Liu, S. C. Master's Thesis, Guizhou University, 2015. (刘树成, 硕士论文, 贵州大学, 2015.)
[11] Niu, Y. F.; Qian, Y.; Hu, X. D. Chin. J. Org. Chem. 2016, 36, 555. (牛艳芳, 钱鹰, 胡秀东, 有机化学, 2016, 36, 555.)
[12] Zhang, S. F.; Yang, J. D.; Liu, M. Z.; Lü, S. Y.; Gao, C. M.; Wu, C.; Zhu, Z. Y. Acta Chim. Sinica 2016, 74, 401. (张少飞, 杨建东, 柳明珠, 吕少瑜, 高春梅, 吴灿, 朱召彦, 化学学报, 2016, 74, 401.)
[13] Liu, H.; Zhang, S.; Liu, Y.; Yang, Z.; Feng, X.; Lu, X.; Huo, F. Small 2015, 11, 3130.
[14] Wang, M.; Xu, L.; Zhou, Y. N.; Liu, H.; Li, J.; Lu, X. H. J. Nanjing Univ. Technol. 2016, 38, 88. (王萌, 徐律, 周燕南, 刘红, 黎军, 陆小华, 南京工业大学学报, 自然科学版, 2016, 38, 88.)
[15] Qin, T. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Acta Chim. Sinica 2017, 75, 99. (秦天依, 曾毅, 陈金平, 于天君, 李嫕, 化学学报, 2017, 75, 99.)
[16] Cho, J. M.; Lee, S. R.; Sun, J.; Tsubaki, N.; Jang, E. J.; Bae, J. W. ACS Catal. 2017, 7, 5955.
[17] Zhao, J. K.; Ge, S. S.; Pan, D. J.; Lin, J.; Wan, Z.; Hu, Z.; Wu, T.; Guo, Z. Colloid Inter. Sci. 2018, 529, 111.
[18] Reddy, C. V.; Reddy, I. N.; Shim, J.; Kim, D.; Yoo, K. Ceram. Int. 2018, 44, 12329.
[19] Li, W. H.; Nie, X. W.; Jiang, X.; Zhang, A. F.; Ding, F. S.; Liu, M.; Liu, Z. M.; Guo, X. W.; Song, C. S. Appl. Catal. B Environ. 2018, 220, 397.
[20] Hao, Y.; Li, L.; Liu, D.; Yu, H.; Zhou, Q. Mol. Catal. 2018, 447, 37.
[21] An, M. Z.; Li, L.; Tian, Y.; Yu, H. L.; Zhou, Q. L. RSC Adv. 2018, 8, 18870.
[22] Yang, Z. W.; Xu, X. Q.; Liang, X. X.; Lei, C.; Gao, L.; Hao, R.; Lu, D. D.; Lei, Z. Q. Appl. Surf. Sci. 2017, 420, 276.
[23] Xie, H.; Lu, J.; Shekhar, M.; Elam, J. W.; Delgass, W. N.; Ribeiro, F. H.; Weitz, E.; Poeppelmeier, K. R. ACS Catal. 2013, 3, 61.
[24] Wang, X. X.; Zhang, L. H.; Lin, H. J.; Nong, Q. Y.; Wu, Y.; Wu, T. H.; He, Y. M. RSC Adv. 2014, 4, 40029.
[25] Xu, X. Q.; Liu, R. X.; Cui, Y. N.; Liang, X. X.; Lei, C.; Meng, S. Y.; Ma, Y. L.; Lei, Z. Q.; Yang, Z. W. Appl. Catal. B Environ. 2017, 210, 484.
[26] Shim, J. O.; Jang, W. J.; Jeon, K. W.; Lee, D. W.; Na, H. S.; Kim, H. M.; Lee, Y. L.; Yoo, S. Y.; Jeon, B. H.; Roh, H. S.; Ko, C. H. Appl. Catal. A Gen. 2018, 563, 163.
[27] Shim, J. O.; Na, H. S.; Jha, A.; Jang, W. J.; Jeong, D. W.; Nah, I. W.; Jeon, B. H.; Roh, H. S. Chem. Eng. J. 2016, 306, 908.
[28] Liu, Y.; Xia, C. J.; Wang, Q.; Zhang, L.; Huang, A.; Ke, M.; Song, Z. Z. Catal. Sci. Technol. 2018, 8, 4916.
[29] Okamoto, Y.; Kubota, T.; Ohto, Y.; Nasu, S. J. Catal. 2000, 192, 412.
[30] Chandragiri, V. R.; Neelakanta, R. I.; Jaesool, S.; Dongseob, K.;, Yoo, K. Ceram. Int. 2018, 44, 12329.
[31] Yu, C.; Yang, P.; Tie, L.; Yang, S.; Dong, S.; Sun, J.; Sun, J. Appl. Surf. Sci. 2018, 455, 8.
[32] Mu, X. X.; Jiang, J. F.; Chao, F. F.; Lou, Y. B.; Chen, J. X. Dalton Trans. 2018, 47, 1895.
/
〈 |
|
〉 |