Construction of Cobalt/Nitrogen/Carbon Electrocatalysts with Highly Exposed Active Sites for Oxygen Reduction Reaction
Received date: 2018-08-07
Online published: 2018-11-08
Supported by
Project supported by the National Key Research and Development Program of China (No. 2017YFA0206500), National Natural Science Foundation of China (Nos. 21773111, 21473089, 51571110, 21573107), Changzhou Technology Support Program (No. CE20130032), Priority Academic Program Development of Jiangsu Higher Education Institution, and Fundamental Research Funds for the Central Universities.
The ever-growing crises of fossil fuel shortage and environmental pollution urgently call for the exploration of clean and renewable energies. Fuel cells present high power efficiency and emit zero pollutants, showing great potential in the future energy system. The main bottleneck of fuel cell commercialization is the sluggish oxygen reduction reaction (ORR) at the cathode. To date, the most active electrocatalysts for ORR are platinum and its alloys. However, the scarcity, high cost and susceptibility to methanol crossover of precious metals hinder the large-scale application of fuel cells. The development of highly efficient and stable non-precious metal ORR electrocatalysts with high resistance to methanol crossover is of great significance. M/N/C (M=Fe, Co, etc.) catalysts are attractive non-precious metal based ORR electrocatalysts and their performance depends on the density of active sites on the catalyst surface. The common synthesis of M/N/C catalysts is to pyrolyze the mixture of metal salt, nitrogen-containing precursor and carbon support. However, so-synthesized catalysts usually contain large metal-based particles, leading to the shortcomings of low density and partial embedding of active sites. Graphitic carbon nitride (g-C3N4) with high concentration of pyridine-like nitrogen in heptazine heterorings can provide abundant and uniform nitrogen coordination sites, which can capture metal ions by the interaction between metal ions and N sites. In addition, g-C3N4 would be decomposed largely during pyrolysis, which is beneficial to form highly exposed M/N/C active sites by pyrolyzing the g-C3N4 with adsorbed metal ions. Herein, we reported the construction of Co/N/C electrocatalysts with highly exposed active sites. Specifically, the g-C3N4 was uniformly supported on the surface of high-conductive hierarchical carbon nanocages (hCNC) by the impregnation and pyrolysis process, leading to the formation of g-C3N4/hCNC composite. Co2+ ions were then captured by the g-C3N4 species on the surface owing to the interaction between the lone pair electrons of nitrogen and the Co2+ ions, and the subsequent pyrolysis led to the Co/N/C catalysts with highly exposed active sites, high conductivity and multiscale pore structure. The optimized catalyst obtained at 800℃ exhibits excellent ORR performance in alkaline medium, with a high onset potential (0.97 V) comparable to commercial Pt/C catalyst, while much better stability and high immunity to methanol crossover. This study demonstrates an effective strategy for the construction of high-efficient M/N/C catalysts with highly exposed active sites.
Zhang Zhiqi , Ge Chengxuan , Chen Yugang , Wu Qiang , Yang Lijun , Wang Xizhang , Hu Zheng . Construction of Cobalt/Nitrogen/Carbon Electrocatalysts with Highly Exposed Active Sites for Oxygen Reduction Reaction[J]. Acta Chimica Sinica, 2019 , 77(1) : 60 -65 . DOI: 10.6023/A18080323
[1] Gewirth, A. A.; Thorum, M. S. Inorg. Chem. 2010, 49, 3557.
[2] Zhong, C.-J.; Luo, J.; Njoki, P. N.; Mott, D.; Wanjala, B.; Loukrakpam, R.; Lim, S.; Wang, L.; Fang, B.; Xu, Z. Energy Environ. Sci. 2008, 1, 454.
[3] Debe, M. K. Nature 2012, 486, 43.
[4] Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48.
[5] Zhong, G.; Wang, H.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943(in Chinese). (钟国玉, 王红娟, 余皓, 彭峰, 化学学报, 2017, 75, 943.)
[6] Sun, T.; Wu, Q.; Zhuo, O.; Jiang, Y.; Bu, Y.; Yang, L.; Wang, X.; Hu, Z. Nanoscale 2016, 8, 8480.
[7] Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443.
[8] Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Adv. Mater. 2015, 27, 2521.
[9] Wu, G.; Zelenay, P. Acc. Chem. Res. 2013, 46, 1878.
[10] Antolini, E. Appl. Catal., B:Environ. 2009, 88, 1.
[11] Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Adv. Mater. 2014, 26, 6074.
[12] Yue, B.; Ma, Y.; Tao, H.; Yu, L.; Jian, G.; Wang, X.; Wang, X.; Lu, Y.; Hu, Z. J. Mater. Chem. 2008, 18, 1747.
[13] Feng, H.; Ma, J.; Hu, Z. J. Mater. Chem. 2010, 20, 1702.
[14] Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S.-Z. J. Am. Chem. Soc. 2017, 139, 3336.
[15] Qing, H.; Zhihua, C.; Jian, G.; Yang, Z.; Zhipan, Z.; Liming, D.; Liangti, Q. Adv. Funct. Mater. 2017, 27, 1606352.
[16] Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. Angew. Chem. Int. Ed. 2015, 54, 11265.
[17] Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Adv. Mater. 2016, 28, 2427.
[18] Liu, Q.; Zhang, J. Langmuir 2013, 29, 3821.
[19] Yu, Q.; Xu, J.; Wu, C.; Guan, L. RSC Adv. 2015, 5, 65303.
[20] Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S. Z. Nat. Commun. 2014, 5, 3783.
[21] Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. ACS Nano 2015, 9, 931.
[22] Ji, L.; Yao, Z.; Jun, C.; Jian, L.; Denisa, H.-J.; Mietek, J.; Zhang, Q. S. Angew. Chem. Int. Ed. 2012, 51, 3892.
[23] Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang, W.; Zhu, Z.; Smith, S. C.; Jaroniec, M.; Lu, G. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2011, 133, 20116.
[24] Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acc. Chem. Res. 2017, 50, 435.
[25] Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. ACS Catal. 2015, 5, 1857.
[26] Lyu, Z.; Xu, D.; Yang, L.; Che, R.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X.; Hu, Z. Nano Energy 2015, 12, 657.
[27] Bu, Y.; Sun, T.; Cai, Y.; Du, L.; Zhuo, O.; Yang, L.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2017, 29, 1700470.
[28] Wang, L. W.; Feng, R.; Xia, J. Z.; Chen, S.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 1070(in Chinese). (王立伟, 冯瑞, 夏婧竹, 陈盛, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2014, 72, 1070.)
[29] Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Adv. Mater. 2009, 21, 1609.
[30] Zou, X.; Su, J.; Silva, R.; Goswami, A.; Sathe, B. R.; Asefa, T. Chem. Commun. 2013, 49, 7522.
[31] Niu, K.; Yang, B.; Cui, J.; Jin, J.; Fu, X.; Zhao, Q.; Zhang, J. J. Power Sources 2013, 243, 65.
[32] Kuang, M.; Wang, Q.; Han, P.; Zheng, G. Adv. Energy Mater. 2017, 7, 1700193.
[33] Zhao, J.; Lai, H.; Lyu, Z.; Jiang, Y.; Xie, K.; Wang, X.; Wu, Q.; Yang, L.; Jin, Z.; Ma, Y.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541.
[34] Fei, H.; Dong, J.; Arellano-Jiménez, M. J.; Ye, G.; Kim, N. D.; Samuel, E. L. G.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; Yacaman, M. J.; Ajayan, P. M.; Chen, D.; Tour, J. M. Nat. Commun. 2015, 6, 8668.
/
〈 |
|
〉 |