Research Progress of Compositional Controlling Strategy to Perovskite for High Performance Solar Cells
Received date: 2018-10-29
Online published: 2018-11-27
Supported by
Project supported by the Science and Technology Service Network Initiative (KFJ-SW-STS-152).
Over the past few years, the power conversion efficiency of perovskite solar cells have shown a tremendous progress from 3.8% in 2009 to 23.3% in 2018. Perovskites have exhibited excellent advantages in photovoltaic devices and other promising optoelectronic devices owing to their exceptional material properties, including direct and tunable bandgaps, strong light absorption, high electron/hole mobilities, long charge carrier lifetimes and diffusion lengths. The outstanding performance of perovskite solar cells is closely related with the deposition techniques and material composition of perovskite films. The preparation process of perovskite film is crucial for obtaining high efficiency devices, and it usually requires to fabricate a high coverage, compact and uniform perovskite layer. At present, the preparation technology of perovskite absorption layer mainly includes one-step processing, two-step processing, dual-source thermal evaporation processing, vapor-assisted solution processing and some scalable processing methods, and there are many reports and summaries about this work. However, perovskites still have some shortcomings such as insufficient light absorption range, poor long-term stability, the lead toxicity, which need to be overcome to realize higher power conversion efficiency and further product application. Compositional control engineering of perovskite materials becomes one of the effective ways to solve the above problems, but the summary of the research in this area is still lacking. In this review, we summarize the recent progress on the perovskite materials with different component systems, including organic-inorganic lead halide perovskite, all-inorganic lead halide perovskite, low-lead perovskite and lead-free perovskite. We also discuss some representative material compositions and the research on their corresponding preparation methods, the optimization of device structure and the effects on the device performance. Moreover, we compare and summarize the advantages and disadvantages of perovskite materials with different component systems. The purpose is to provide ideas on how to improve the efficiency and stability of perovskite solar cells through compositional controlling, and finally realize commercial application.
Key words: perovskite; compositional controlling; solar cell; high efficiency; stability
Chen Xinyu , Xie Junjie , Wang Wei , Yuan Huihui , Xu Di , Zhang Tao , He Yunlong , Shen Hujiang . Research Progress of Compositional Controlling Strategy to Perovskite for High Performance Solar Cells[J]. Acta Chimica Sinica, 2019 , 77(1) : 9 -23 . DOI: 10.6023/A18100447
[1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[2] Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 4088.
[3] Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2012, 134, 17396.
[4] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
[5] Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376.
[6] Rong, Y.; Mei, A.; Liu, L.; Li, X.; Han, H. Acta Chim. Sinica 2015, 73, 237(in Chinese). (荣耀光, 梅安意, 刘林峰, 李雄, 韩宏伟, 化学学报, 2015, 73, 237.)
[7] Zhang, T.; Zhao, Y. Acta Chim. Sinica 2015, 73, 202(in Chinese). (张太阳, 赵一新, 化学学报, 2015, 73, 202.)
[8] Guo, X.; Niu, G.; Wang, L. Acta Chim. Sinica 2015, 73, 211(in Chinese). (郭旭东, 牛广达, 王立铎, 化学学报, 2015, 73, 211.)
[9] Ye, S.; Liu, Z.; Bian, Z.; Huang, C. Acta Chim. Sinica 2015, 73, 193(in Chinese). (叶森云, 刘志伟, 卞祖强, 黄春辉, 化学学报, 2015, 73, 193.)
[10] Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Seok, S. I.; Lee, J.; Seo, J. Nat. Energy 2018, 3, 682.
[11] NREL efficiency chart. http://nrel.gov/ncpv/images/efficiency_chart.jpg.
[12] Shao, Z.; Pan, X.; Zhang, X.; Ye, J.; Zhu, L.; Li, Y.; Ma, Y.; Huang, Y.; Zhu, J.; Hu, L.; Kong, F.; Dai, S. Acta Chim. Sinica 2015, 73, 267(in Chinese). (邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元, 化学学报, 2015, 73, 267.)
[13] Xue, Q.; Sun, C.; Hu, Z.; Huang, F.; Yip, H.-L.; Cao, Y. Acta Chim. Sinica 2015, 73, 179(in Chinese). (薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛, 化学学报, 2015, 73, 179.)
[14] Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Sci. Rep. 2012, 2, 591.
[15] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[16] Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622.
[17] Albero, J.; Asiri, A. M.; Garcia, H. J. Mater. Chem. A 2016, 4, 4353.
[18] Schilling, A.; Cantoni, M.; Guo, J. D.; Ott, H. R. Nature 1993, 363, 56.
[19] Kieslich, G.; Sun, S.; Cheetham, A. K. Chem. Sci. 2014, 5, 4712.
[20] Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Nat. Commun. 2014, 5, 5757.
[21] Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem. Sci. 2016, 7, 4548.
[22] Grätzel, M. Nat. Mater. 2014, 13, 838.
[23] Xie, J.; Liu, Y.; Liu, J.; Lei, L.; Gao, Q.; Li, J.; Yang, S. J. Power Sources 2015, 285, 349.
[24] Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
[25] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.
[26] Yang, D.; Lv, J.; Zhao, X.; Xu, Q.; Fu, Y.; Zhan, Y.; Zunger, A.; Zhang, L. Chem. Mater. 2017, 29, 524.
[27] Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat. Commun. 2014, 5, 5784.
[28] Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew. Chem., Int. Ed. Engl. 2014, 53, 9898.
[29] Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Adv. Mater. 2014, 26, 6503.
[30] Liu, J.; Gao, C.; He, X.; Ye, Q.; Ouyang, L.; Zhuang, D.; Liao, C.; Mei, J.; Lau, W. ACS Appl. Mater. Interfaces 2015, 7, 24008.
[31] Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. J. Am. Chem. Soc. 2015, 137, 8696.
[32] Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Nano Lett. 2017, 17, 2028.
[33] Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I. Science 2017, 356, 167.
[34] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.
[35] Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D.; Bein, T.; Docampo, P. J. Phys. Chem. Lett. 2014, 5, 2791.
[36] Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485.
[37] Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. Adv. Mater. 2014, 26, 4991.
[38] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[39] Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234.
[40] Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 3151.
[41] Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S. M.; Park, N.-G. Adv. Energy Mater. 2015, 5, 1501310.
[42] Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Chem. Mater. 2016, 28, 284.
[43] Zhang, M.; Yun, J. S.; Ma, Q.; Zheng, J.; Lau, C. F. J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M. A.; Huang, S.; Ho-Baillie, A. W. Y. ACS Energy Lett. 2017, 2, 438.
[44] De Marco, N.; Zhou, H.; Chen, Q.; Sun, P.; Liu, Z.; Meng, L.; Yao, E.-P.; Liu, Y.; Schiffer, A.; Yang, Y. Nano Lett. 2016, 16, 1009.
[45] Jodlowski, A. D.; Roldan-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; de Miguel, G.; Nazeeruddin, M. K. Nat. Energy 2017, 2, 972.
[46] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[47] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
[48] Docampo, P.; Hanusch, F. C.; Stranks, S. D.; Doeblinger, M.; Feckl, J. M.; Ehrensperger, M.; Minar, N. K.; Johnston, M. B.; Snaith, H. J.; Bein, T. Adv. Energy Mater. 2014, 4, 1400355.
[49] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[50] You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. ACS Nano 2014, 8, 1674.
[51] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
[52] Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989.
[53] McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hoerantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Science 2016, 351, 151.
[54] Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Roethlisberger, U.; Grätzel, M. Energy Environ. Sci. 2016, 9, 656.
[55] Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92.
[56] Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Sci. Adv. 2017, 3.
[57] Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Nat. Commun. 2018, 9.
[58] Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345.
[59] Duan, J.; Zhao, Y.; He, B.; Tang, Q. Small 2018, 14, 1704443.
[60] Duan, J.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 3787.
[61] Duan, J.; Hu, T.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 5746.
[62] Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Adv. Energy Mater. 2018, 8, 1802346.
[63] Yin, G.; Zhao, H.; Jiang, H.; Yuan, S.; Niu, T.; Zhao, K.; Liu, Z.; Liu, S. Adv. Funct. Mater. 2018, 28, 1803269.
[64] Bai, D.; Bian, H.; Jin, Z.; Wang, H.; Meng, L.; Wang, Q.; Liu, S. Nano Energy 2018, 52, 408.
[65] Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S. J. Phys. Chem. Lett. 2014, 5, 1004.
[66] Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 8094.
[67] Zuo, F.; Williams, S. T.; Liang, P.-W.; Chueh, C.-C.; Liao, C.-Y.; Jen, A. K. Y. Adv. Mater. 2014, 26, 6454.
[68] Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Xiong, R.-G.; Yan, Y. J. Am. Chem. Soc. 2016, 138, 12360.
[69] Hao, F.; Stoumpos, C. C.; Duyen Hanh, C.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489.
[70] Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 3061.
[71] Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W. L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N.; Mhaisalkar, S. G. J. Mater. Chem. A 2015, 3, 23829.
[72] Park, B.-W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Adv. Mater. 2015, 27, 6806.
[73] Lyu, M.; Yun, J.-H.; Cai, M.; Jiao, Y.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A.; Wang, H.; Liu, G.; Wang, L. Nano Res. 2016, 9, 692.
[74] Bai, F.; Hu, Y.; Hu, Y.; Qiu, T.; Miao, X.; Zhang, S. Sol. Energy Mater. Sol. Cells 2018, 184, 15.
[75] Saliba, M.; Correa-Baena, J.-P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Angew. Chem., Int. Ed. 2018, 57, 2554.
[76] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Lett. 2015, 15, 3692.
[77] Zhao, B.; Abdi-Jalebi, M.; Tabachnyk, M.; Glass, H.; Kamboj, V. S.; Nie, W.; Pearson, A. J.; Puttisong, Y.; Godel, K. C.; Beere, H. E.; Ritchie, D. A.; Mohite, A. D.; Dutton, S. E.; Friend, R. H.; Sadhanala, A. Adv. Mater. 2017, 29.
[78] Hardin, B. E.; Snaith, H. J.; McGehee, M. D. Nat. Photonics 2012, 6, 162.
[79] Leijtens, T.; Stranks, S. D.; Eperon, G. E.; Lindblad, R.; Johansson, E. M. J.; McPherson, I. J.; Rensmo, H.; Ball, J. M.; Lee, M. M.; Snaith, H. J. ACS Nano 2014, 8, 7147.
[80] Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[81] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
[82] Zhang, W.; Eperon, G. E.; Snaith, H. J. Nat. Energy 2016, 1, 16048.
[83] Ishihara, T. J. Lumin. 1994, 60-1, 269.
[84] Hirasawa, M.; Ishihara, T.; Goto, T.; Uchida, K.; Miura, N. Phys. B 1994, 201, 427.
[85] D'Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Nat. Commun. 2014, 5.
[86] Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7, 399.
[87] Borriello, I.; Cantele, G.; Ninno, D. Phys. Rev. B 2008, 77, 235214.
[88] Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Nat. Photonics 2013, 7, 487.
[89] Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G. Nat. Nanotechnol. 2014, 9, 927.
[90] Liu, D.; Kelly, T. L. Nat. Photonics 2014, 8, 133.
[91] Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347, 967.
[92] Sun, W.; Li, Y.; Yan, W.; Peng, H.; Ye, S.; Rao, H.; Zhao, Z.; Liu, Z.; Bian, Z.; Huang, C. Chin. J. Chem. 2017, 35, 687.
[93] Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510.
[94] Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2619.
[95] Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934.
[96] Rong, Y.; Tang, Z.; Zhao, Y.; Zhong, X.; Venkatesan, S.; Graham, H.; Patton, M.; Jing, Y.; Guloy, A. M.; Yao, Y. Nanoscale 2015, 7, 10595.
[97] Son, D. Y.; Lee, J. W.; Choi, Y. J.; Jang, I. H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. G. Nat. Energy 2016, 1, 16081.
[98] Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989.
[99] Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M. Science 2016, 354, 206.
[100] Giorgi, G.; Fujisawa, J.-I.; Segawa, H.; Yamashita, K. J. Phys. Chem. C 2015, 119, 4694.
[101] Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Saski, M.; Yadav, P.; Bi, D.; Pellet, N.; Lewinski, J.; Zakeeruddin, S. M.; Grätzel, M.; Emsley, L. J. Am. Chem. Soc. 2018, 140, 3345.
[102] Poorkazem, K.; Kelly, T. L. Sustainable Energy Fuels 2018, 2, 1332.
[103] Stoddard, R. J.; Rajagopal, A.; Palmer, R. L.; Braly, I. L.; Jen, A. K. Y.; Hillhouse, H. W. ACS Energy Lett. 2018, 3, 1261.
[104] Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Huettner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatuere, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421.
[105] Zhao, Y.; Zhu, K. J. Phys. Chem. C 2014, 118, 9412.
[106] Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, 24, 7102.
[107] Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H. J. Adv. Mater. 2016, 28, 10701.
[108] Yusoff, A. R. B. M.; Kim, H. P.; Li, X.; Kim, J.; Jang, J.; Nazeeruddin, M. K. Adv. Mater. 2017, 29, 1602940.
[109] Baena, J. P. C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Kandada, A. R. S.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Energy Environ. Sci. 2015, 8, 2928.
[110] Li, X.; Bi, D.; Yi, C.; Decoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Science 2016, 353, 58.
[111] Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Baena, J.-P. C.; Decoppet, J.-D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Sci. Adv. 2016, 2, 7.
[112] Bi, D.; Yi, C.; Luo, J.; Decoppet, J.-D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Nat. Energy 2016, 1, 16142.
[113] Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F.; Boyen, H.-G. Adv. Energy Mater. 2015, 5, 1500477.
[114] Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167.
[115] Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.
[116] Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688.
[117] Ripolles, T. S.; Nishinaka, K.; Ogomi, Y.; Miyata, Y.; Hayase, S. Sol. Energy Mater. Sol. Cells 2016, 144, 532.
[118] Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P. J. Am. Chem. Soc. 2015, 137, 9230.
[119] Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. J. Am. Chem. Soc. 2015, 137, 10276.
[120] Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Adv. Mater. 2015, 27, 7162.
[121] Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. Adv. Funct. Mater. 2016, 26, 2435.
[122] Moller, C. K. Nature 1958, 182, 1436.
[123] Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. Nano Lett. 2016, 16, 3563.
[124] Lin, J.; Lai, M.; Dou, L.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J.; Lu, D.; Hawks, S. A.; Xie, C.; Cui, F.; Alivisatos, A. P.; Limmer, D. T.; Yang, P. Nat. Mater. 2018, 17, 261.
[125] Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746.
[126] Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y. Sci. Adv. 2017, 3, e1700841.
[127] Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. ACS Energy Lett. 2017, 2, 2219.
[128] Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Horantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T.; Snaith, H. J. Adv. Energy Mater. 2016, 6, 1502458.
[129] Wang, Y.; Zhang, T.; Xu, F.; Li, Y.; Zhao, Y. Sol. RRL 2018, 2, 1700180.
[130] Ma, Q.; Huang, S.; Chen, S.; Zhang, M.; Lau, C. F. J.; Lockrey, M. N.; Mulmudi, H. K.; Shan, Y.; Yao, J.; Zheng, J.; Deng, X.; Catchpole, K.; Green, M. A.; Ho-Baillie, A. W. Y. J. Phys. Chem. C 2017, 121, 19642.
[131] Chen, C.-Y.; Lin, H.-Y.; Chiang, K.-M.; Tsai, W.-L.; Huang, Y.-C.; Tsao, C.-S.; Lin, H.-W. Adv. Mater. 2017, 29, 1605290.
[132] Mariotti, S.; Hutter, O. S.; Phillips, L. J.; Yates, P. J.; Kundu, B.; Durose, K. ACS Appl. Mater. Interfaces 2018, 10, 3750.
[133] Zhang, J.; Bai, D.; Jin, Z.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. Adv. Energy Mater. 2018, 8, 1703246.
[134] Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. J. Am. Chem. Soc. 2018, 140, 3825.
[135] Yan, L.; Xue, Q.; Liu, M.; Zhu, Z.; Tian, J.; Li, Z.; Chen, Z.; Chen, Z.; Yan, H.; Yip, H.-L.; Cao, Y. Adv. Mater. 2018, 30, 1802509.
[136] Bai, D.; Zhang, J.; Jin, Z.; Bian, H.; Wang, K.; Wang, H.; Liang, L.; Wang, Q.; Liu, S. F. ACS Energy Lett. 2018, 3, 970.
[137] Bian, H.; Bai, D.; Jin, Z.; Wang, K.; Liang, L.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S. Joule 2018, 2, 1500.
[138] Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; Zhu, G.; Lv, H.; Ma, L.; Chen, T.; Tie, Z.; Jin, Z.; Liu, J. J. Am. Chem. Soc. 2016, 138, 15829.
[139] Zhou, S.; Tang, R.; Yin, L. Adv. Mater. 2017, 29, 1703682.
[140] Yang, Z.; Rajagopal, A.; Chueh, C.-C.; Jo, S. B.; Liu, B.; Zhao, T.; Jen, A. K. Y. Adv. Mater. 2016, 28, 8990.
[141] Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T.-W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R.; Palmstrom, A.; Slotcavage, D. J.; Belisle, R. A.; Patel, J. B.; Parrott, E. S.; Sutton, R. J.; Ma, W.; Moghadam, F.; Conings, B.; Babayigit, A.; Boyen, H.-G.; Bent, S.; Giustino, F.; Herz, L. M.; Johnston, M. B.; McGehee, M. D.; Snaith, H. J. Science 2016, 354, 861.
[142] Konstantakou, M.; Stergiopoulos, T. J. Mater. Chem. A 2017, 5, 11518.
[143] Mitzi, D. B. Prog. Inorg. Chem. 1999, 48, 1.
[144] Hodes, G. Science 2013, 342, 317.
[145] Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Chem. Mater. 2001, 13, 3728.
[146] Hu, H.; Dong, B.; Zhang, W. J. Mater. Chem. A 2017, 5, 11436.
[147] Stoumpos, C. C.; Frazer, L.; Clark, D. J.; Kim, Y. S.; Rhim, S. H.; Freeman, A. J.; Ketterson, J. B.; Jang, J. I.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 6804.
[148] Sun, P.-P.; Li, Q.-S.; Yang, L.-N.; Li, Z.-S. Nanoscale 2016, 8, 1503.
[149] Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558.
[150] Giustino, F.; Snaith, H. J. ACS Energy Lett. 2016, 1, 1233.
[151] Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. J. Am. Chem. Soc. 2016, 138, 2138.
[152] McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Chem. Mater. 2016, 28, 1348.
[153] Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 1254.
[154] Wei, F.; Deng, Z.; Sun, S.; Xie, F.; Kieslich, G.; Evans, D. M.; Carpenter, M. A.; Bristowe, P. D.; Cheetham, A. K. Mater. Horiz. 2016, 3, 328.
[155] Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. J. Phys. Chem. Lett. 2016, 7, 2579.
[156] Du, K.-z.; Meng, W.; Wang, X.; Yan, Y.; Mitzi, D. B. Angew. Chem., Int. Ed. 2017, 56, 8158.
[157] Li, Q.; Wang, Y.; Pan, W.; Yang, W.; Zou, B.; Tang, J.; Quan, Z. Angew. Chem., Int. Ed. 2017, 56, 15969.
/
〈 |
|
〉 |