Communication

Iron-Catalyzed Cross-Coupling of Diarylzinc or Aryl Grignard Reagents with Difluoroalkyl Bromides

  • An Lun ,
  • Tong Feifei ,
  • Zhang Xingang
Expand
  • Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-09-18

  Online published: 2018-12-11

Supported by

Project supported by the National Basic Research Program of China (973 Program) (No. 2015CB931900), the National Natural Science Foundation of China (Nos. 21425208, 21672238, 21332010 and 21421002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).

Abstract

The demanding of discovering new pharmaceuticals, agrochemicals and advanced functional materials have triggered extensive efforts on efficient synthesis of fluorinated compounds. Over the past decade, the transition-metal-catalyzed fluoroalkylation has emerged as an efficient and straightforward strategy for the synthesis of organofluorine compounds. Despite the importance of the reported synthetic methods, the development of environmentally benign and cost-efficient fluoroalkylation reactions with base metals as catalysis and widely available fluoroalkyl halides as fluoroalkyl sources continues to attract great interest. Here, we reported the first example of iron-catalyzed cross-coupling of diarylzinc reagents with gem-difluoropropargyl bromides. The reaction proceeds under mild reaction conditions and provides a facile access to gem-difluoropropargyl arenes. Additionally, this iron-catalytic system can also be applied to the cross-coupling of aryl Grignard reagents with difluoroalkyl bromides. Applications of the method led to modified bioactive molecules efficiently, offering potential opportunities in medicinal chemistry. Preliminary mechanistic studies reveal that a single electron transfer pathway is involved in the reaction. A representative procedure for iron-catalyzed cross-coupling of diarylzincs with gem-difluoropropargyl bromide is as following: Fe(acac)3 (10 mol%) was added to a 25 mL of Schlenck tube, the tube was then evacuated and backfilled with Ar (3 times). gem-Difluoropropargyl bromide 2 (0.3 mmol, 1.0 equiv.), TMEDA (0.45 mmol, 1.5 equiv.) and THF (1 mL) were then added, the reaction mixture was stirred at room temperature for 10 min and cooled to -20 ℃. A solution of diarylzinc reagent (0.45 mmol in 1.5 mL of THF, 1.5 equiv.) was added dropwise. After stirring for 4 h at -20 ℃, the reaction mixture was quenched with saturated NH4Cl solution. The yield was determined by 19F NMR before working up. If necessary, the reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography to give product 3.

Cite this article

An Lun , Tong Feifei , Zhang Xingang . Iron-Catalyzed Cross-Coupling of Diarylzinc or Aryl Grignard Reagents with Difluoroalkyl Bromides[J]. Acta Chimica Sinica, 2018 , 76(12) : 977 -982 . DOI: 10.6023/A18080314

References

[1] For selected reviews, see:(a) Hiyama, T. Organofluorine Compounds, Chemistry and Applications, Springer-Verlag, Berlin Heidelberg, 2000.
(b) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) O' Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[2] (a) Blackburn, C. M.; England, D. A.; Kolkmann, F. J. Chem. Soc. Chem. Commun. 1981, 930.
(b) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin Trans. 1 1984, 1119.
(c) Kitazume, T.; Kamazaki, T. Experimental Methods in Organic Fluorine Chemistry, Gordon and Breach Science, Tokyo, 1998.
(d) Yang, Y.; You, Z.; Qing, F.-L. Acta Chim. Sinica 2012, 70, 2323(in Chinese). (杨义, 游正伟, 卿凤翎, 化学学报, 2012, 70, 2323.)
[3] For selected reviews, see:(a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(b) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
[4] For selected examples, see:(a) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martasek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229.
(b) Anderson, M. O.; Zhang, J.; Liu, Y.; Yao, C.; Phuan, P.-W.; Verkman, A. S. J. Med. Chem. 2012, 55, 5942.
(c) Matthew, A. N.; Zephyr, J.; Hill, C. J.; Jahangir, M.; Newton, A.; Petropoulos, C. J.; Huang, W.; Kurt-Yilmaz, N.; Schiffer, C. A.; Ali, A. J. Med. Chem. 2017, 60, 5699.
[5] (a) Markovsi, L. N.; Pahinnik, V. E.; Kirsanov, A. V. Synthesis 1973, 12, 787.
(b) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
[6] For selected reviews regarding fluorination and trifluoromethylation, see:(a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
[7] For transition-metal-catalyzed difluoroalkylation, see:(a) Chen, B.; Vicic, D. A. Top. Organomet. Chem. 2014, 52, 113.
(b) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波,化学学报, 2015, 73, 90.)
(c) Wang, W.; Yu, Q.; Zhang, Q.; Li, J.; Hui, F.; Yang, J.; LÜ, J. Chin. J. Org. Chem. 2018, 38, 1569(in Chinese). (王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑, 有机化学, 2018, 38, 1569.)
[8] (a) McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 2921.
(b) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 10, 4095.
(c) Taguchi, T.; Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.; Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103.
[9] (a) Chen, Q.-Y.; Yang, Z.-Y. J. Fluorine Chem. 1985, 28, 399.
(b) Chen, Q.-Y.; Yang, Z.-Y. Acta Chim. Sinica 1985, 43, 1118(in Chinese). (陈庆云, 杨振宇, 化学学报, 1985, 43, 1118.)
(c) Zhou, Q.-L.; Huang, Y.-Z. J. Fluorine Chem. 1989, 43, 385.
(d) Huang, W.-Y. Youji Huaxue, 1992, 12, 12(in Chinese). (黄维垣, 有机化学, 1992, 12, 12)
(e) Huang, X.-T.; Long, Z.-Y.; Chen, Q.-Y. J. Fluorine Chem. 2001, 111, 107.
[10] (a) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264.
(b) Feng, Z.; Chen, F.; Zhang, X. Org. Lett. 2012, 14, 1938.
(c) Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230.
(d) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 1669.
(e) Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 9909.
(f) Feng, Z.; Min, Q.-Q.; Fu, X.-P.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918.
(g) An, L.; Xu, C.; Zhang, X. Nat. Commun. 2017, 8, 1460.
[11] For selected reviews, see:(a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.
(b) Sherry, B. D.; FÜrstner, A. Acc. Chem. Res. 2008, 41, 1500.
(c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(d) Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.; Ilies, L.; Nakamura, M. Org. React. 2014, 83, 1.
(e) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
(f) Kuzmina, O. M.; Steib, A. K.; Moyeux, A.; Cahiez, G.; Knochel, P. Synthesis 2015, 47, 1696.
(g) Bedford, R. B. Acc. Chem. Res. 2015, 48, 1485.
(h) Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766.
(i) Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev. 2017, 117, 9086.
[12] For an iron-catalyzed cross-coupling of a-halo-b,b-difluoroethylene-containing compounds, see:(a) Lin, X.; Zheng, F.; Qing, F.-L. Organometallics 2012, 31, 1578. For an iron-catalyzed difluoromethylation of arylzincs with difluoromethyl 2-pyridyl sulfone, see:(b) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880.
[13] An, L.; Xiao, Y.-L.; Zhang, X. Angew. Chem., Int. Ed. 2018, 57, 6921.
[14] Xu, B.; Mashuta, M. S.; Hammond, G. B. Angew. Chem., Int. Ed. 2006, 45, 7265.
[15] (a) Yu, Y.-B.; He, G.-Z.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 10457.
(b) Guo, W.-H.; Luo, Z.-J.; Zeng, W.; Zhang, X. ACS Catal. 2017, 7, 896.
(c) Xiao, Y.-L.; Pan, Q.; Zhang, X. Acta Chim. Sinica 2015, 73, 383(in Chinese). (肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 383.)
[16] (a) Furstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773.
(b) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.; Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078.
(c) Bedford, R. B.; Brenner, P. B.; Carter, E.; Cogswell, P. M.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Nunn, J.; Woodall, C. H. Angew. Chem., Int. Ed. 2014, 53, 1804.
[17] (a) Hedstrçm, A.; Izakian, Z.; Vreto, I.; Wallentin, C.-J.; Norrby, P. Chem. Eur. J. 2015, 21, 5946;
(b) Daifuku, S. L.; Kneebone, J. L.; Snyder, B. E. R.; Neidig, M. L. J. Am. Chem. Soc. 2015, 137, 11432;
(c) Kneebone, J. L.; Brennessel, W. W.; Neidig, M. L. J. Am. Chem. Soc. 2017, 139, 6988.
[18] (a) Sharma, A. K.; Sameera, W. M. C.; Jin, M.; Adak, L.; Okuzono, C.; Iwamoto, T.; Kato, M.; Nakamura, M.; Morokuma, K. J. Am. Chem. Soc. 2017, 139, 16126.
(b) Lee, W.; Zhou, J.; Gutierrez, O. J. Am. Chem. Soc. 2017, 139, 16126.

Outlines

/