Article

Label-free Detection of PD-1 Antibody and Antigen Immunoreaction Using Nano-Sensors

  • Fu Fangzhou ,
  • Zhang Zhicheng ,
  • Sun Qianyi ,
  • Xu Bing ,
  • Sha Jingjie
Expand
  • a Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189;
    b School of Mechanical Engineering, Southeast University, Nanjing 211189

Received date: 2018-11-22

  Online published: 2019-01-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51675101, 51435003, 51375092) and the Postgraduate Research & Practice In-novation Program of Jiangsu Province (SJCX18_0019).

Abstract

Immunotherapy for cancer is a method to treat cancer by using the body's own immune system. Programmed death receptor 1 (PD-1) is one of the checkpoints in the immunotherapy. The signal pathway PD-1 (programmed death receptor 1)/PD-L1 (ligand of PD-1) is closely related to the immune escape of the cancer cells. The inhibitor drugs for PD-1 checkpoint, essentially the monoclonal antibodies of PD-1 or PD-L1 which is essentially the immune checkpoints inhibitors could block the PD-1/PD-L1 pathway and reactivate T-cells to kill cancer cells, and as a result, the immunotherapy for cancer is realized. In order to study the binding process of PD-1 drugs and PD-1 antigen in vivo, in this work, solid-state nanopore as a single molecule method is used to detect the binding of PD-1 antibody and antigen. The PD-1 antibody as well as antigen is driven though the same nanopore under the same experimental condition by the external electric field. Since the antibody's block is about 0.01297 while the antigen's block is 0.00404, the PD-1 antibody is distinguished with the PD-1 antigen according to the theoretical formula. Driving the PD-1 antigen though the nanopore modified by PD-1 antibody (a series of experiments are conducted for characterization) under the same temperature and buffer concentration, the antibody-antigen complexes are detected and distinguished with PD-1 protein and its antibody through the relative current drop analysis and the current drop achieved before. The results suggest that the antibody and antigen have a specific binding (the smaller peak represents the free PD-1 antibody and antigen) and the binding process can be detected by nano-sensors. So the nanopore is able to distinguish the antibody, the antigen and the complexes without any labling. And in the future, the nanopore technology may be a rapid and label-free way for patients and doctors to evaluate the drugs' efficiency.

Cite this article

Fu Fangzhou , Zhang Zhicheng , Sun Qianyi , Xu Bing , Sha Jingjie . Label-free Detection of PD-1 Antibody and Antigen Immunoreaction Using Nano-Sensors[J]. Acta Chimica Sinica, 2019 , 77(3) : 287 -292 . DOI: 10.6023/A18110472

References

[1] Chen, M. J.; Novaes, P. E.; Gadia, R. Rev. Assoc. Med. Bras. 2017, 63, 729.
[2] Meyer, L. A.; Cronin, A. M.; Sun, C. C. J. Clin. Oncol. 2016, 34.
[3] Salto, S.; Shimozuma, K.; Ohashi, Y. Value Health 2007, 10, A340.
[4] Riaz, S. P.; Lüchtenborg, M.; Jack, R. H. Eur. J. Cancer 2012, 48, 54.
[5] Matsuzawa, F.; Ohki, S. Y.; Aikawa, S. I. Sci. Adv. Mater. 2005, 6, 463.
[6] Saleh, O. A.; Sohn, L. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 820.
[7] Schibel, A. E. P.; Ervin, E. N. Langmuir 2014, 30, 11248.
[8] Wang, S.; Haque, F.; Rychahou, P. G. ACS Nano 2013, 7, 9814.
[9] Stephen, W. H.; Eric, M.; Iftekhar, A. BMC Bioinformatics 2007, 8, S20.
[10] Wu, H. J.; Li, Y.; Fan, J. Anal. Chem. 2014, 86, 1988.
[11] Brower, V. JNCI, J. Natl. Cancer Inst. 2015, 107, djv069.
[12] Li, Q.; Quan, L.; Lyu, J. Oncotarget 2016, 7, 64967.
[13] Miller, K. D.; Siegel, R. L.; Lin, C. C. CA-Cancer J. Clin. 2016, 66, 271.
[14] Muqbil, I.; Azmi, A. S.; Mohammad, R. M. Cancers 2018, 10, 138.
[15] Barbee, M. S.; Ogunniyi, A.; Horvat, T. Z. Ann. Pharmacother. 2015, 49, 907.
[16] Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734. (曹婵, 廖冬芳, 应佚伦, 龙亿涛, 化学学报, 2016, 74, 734.)
[17] Sha, J. J.; Xu, B.; Chen, Y. F.; Yang, Y. J. Acta Chim. Sinica 2017, 75, 11. (沙菁?, 徐冰, 陈云飞, 杨颜菁, 化学学报, 2017, 75, 11.)
[18] Liao, D. F.; Cao, C.; Ying, Y. L. Small 2018, 14, 1704520.
[19] Kasianowicz, J. J.; Bezrukov, S. M. Nat. Biotechnol. 2016, 34, 481.
[20] Feng, Y.; Zhang, Y.; Ying, C. Genom. Proteom. Bioinf. 2015, 13, 4.
[21] Howorka, S.; Cheley, S.; Bayley, H. Nat. Biotechnol. 2001, 19, 636.
[22] Wanunu, M. Phys. Life Rev. 2012, 9, 125.
[23] Liu, N. N.; Yang, Z. K.; Ou, X. W. Mikrochim. Acta 2016, 183, 955.
[24] Venkatesan, B. M.; Bashir, R. Nat. Nanotechnol. 2011, 6, 615.
[25] Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44. (应佚伦, 张星, 刘钰, 薛梦竹, 李洪林, 龙亿涛, 化学学报, 2013, 71, 44.)
[26] Nguyen, B. H.; Nguyen, V. H. Adv. Nat. Sci.-Nanosci. 2016, 7, 023002.
[27] Stoloff, D. H.; Wanunu, M. Curr. Opin. Biotechnol. 2013, 24, 699.
[28] Han, A.; Creus, M.; Schürmann, G. Anal. Chem. 2008, 80, 4651.
[29] Freedman, K. J.; Bastian, A. R.; Chaiken, I.; Kim, M. J. Small 2013, 9, 750.
[30] Kwak, D.; Chae, H.; Lee, M. Angew. Chem., Int. Ed. 2016, 128, 5807.
[31] Ying, Y. L.; Yu, R. J.; Hu, Y. X. Chem. Commun. 2017, 53, 8620.
[32] Wang, H. F.; Huang, F.; Gu, Z. Chin. J. Anal. Chem. 2018, 46, 50. (王慧锋, 黄飞, 顾震, 分析化学, 2018, 46, 50.)
[33] Lin, Y.; Ying, Y. L.; Gao, R. Acta Chim. Sinica 2017, 75, 675. (林瑶, 应佚伦, 高瑞, 王慧峰, 龙亿涛, 化学学报, 2017, 75, 675.)
[34] Li, Q.; Lin, Y.; Ying, Y. L.; Liu, S. C.; Long, Y. T. Sci. Sin.:Chim. 2017, 47, 1445. (李巧, 林瑶, 应佚伦, 刘少创, 龙亿涛, 中国科学:化学, 2017, 47, 1445.)
[35] Deblois, R. W.; Bean, C. P. Rev. Sci. Instrum. 1970, 41, 909.
[36] Han, A. P.; Schurmann, G.; Mondin, G.; Bitterli, R. A.; Hegelbach, N. G.; de Rooij, N. F.; Staufer, U. Appl. Phys. Lett. 2006, 88, 350.
[37] Larkin, J.; Henley, R. Y.; Muthukumar, M.; Rosenstein, J. K.; Wanunu, M. Biophys. J. 2014, 106, 696.
[38] Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y. Nanotechnology 2011, 22, 315101.
[39] Dekker, C. Nat. Nanotechnol. 2007, 2, 209.
[40] Gierak, J.; Madouri, A.; Biance, A. L. Microelectron. Eng. 2007, 84, 779.
[41] Ma, J.; Qiu, Y.; Yuan, Z. Phys. Rev. E 2015, 92, 022719.

Outlines

/