Characteristics of Some Typical Inorganic Oxyacid Free Radicals
Received date: 2018-12-06
Online published: 2019-02-14
Supported by
Project supported by the National Natural Science Foundation of China (No. 21673061) and the Open Project of the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QAK201503).
Carbonate radical, nitrate radical, phosphate radical and sulfate radical are all important intermediates of chemical reactions with oxidizing ability. They have a significant effect on the transfer of pollutants in natural environment. In this review, the redox potential, modes of production, detection methods of these radicals and the mechanisms of their reactions with organic compounds are introduced. It can be found that:these four radicals have different reaction rates with organic compounds because of their various redox potential; Carbonate radical is not a scavenger of hydroxyl radical. For some easily oxidized compounds, carbonate radical shows higher oxidizing ability than hydroxyl radical; Hydroxyl radicals can be converted into other four types of radicals. Meanwhile, these four types of radicals react with organic matters by electron transfer, hydrogen abstraction and addition, which is basically consistent with hydroxyl radicals. It can be predicted that the mechanism of organic compounds degradation by these four types of free radicals is similar with that of hydroxyl radicals. In the future, it is necessary to study the mutual conversion principles between these free radicals and hydroxyl radicals and the degradation mechanism of these radicals when reacting with some representative organic compounds.
Wang Chen , Chen Rui , Song Lin , Zhang Naidong . Characteristics of Some Typical Inorganic Oxyacid Free Radicals[J]. Acta Chimica Sinica, 2019 , 77(3) : 205 -212 . DOI: 10.6023/A18120486
[1] Stenman, D.; Carlsson, M.; Reitberger, T. J. Wood. Chem. Technol. 2005, 24, 83.
[2] Canonica, S.; Kohn, T.; Mac, M.; Real, F. J.; Wirz, J.; Von, G. U. Environ. Sci. Technol. 2005, 39, 9182.
[3] Dell'Arciprete, M. L.; Soler, J. M.; Santos-Juanes, L.; Arques, A.; Mártire, D. O.; Furlong, J. P.; Gonzalez, M. C. Water Res. 2012, 46, 3479.
[4] Medinas, D. B.; Cerchiaro, G.; Trindade, D. F.; Augusto, O. Iubmb. Life. 2007, 59, 255.
[5] Lu, C.; Lin, J. M. Catal. Today. 2004, 89, 343.
[6] Ghalei, M.; Ma, J.; Schmidhammer, U.; Vandenborre, J.; Fattahi, M.; Mostafavi, M. J. Phys. Chem. B 2016, 120, 2434.
[7] Wu, C.; Linden, K. G. Water Res. 2010, 44, 3585.
[8] Liu, Y.; He, X.; Duan, X.; Fatta-Kassinos, D.; Dionysiou, D. D. Water Res. 2016, 95, 195.
[9] Carena, L.; Vione, D. Environ. Chem. Lett. 2016, 14, 183.
[10] Busset, C.; Mazellier, P.; Sarakha, M.; Laat, J. D. J. Photoch. Photobio. A 2007, 185, 127.
[11] Zhao, T. Q.; Li, P.; Tai, C.; She, J. P.; Yin, Y. G.; Qi, Y. A.; Zhang, G. C. J. Hazard. Mater. 2018, 346, 42.
[12] Bonini, M. G.; Radi, R.; Ferrersueta, G.; Ferreira, A. M.; Augusto, O. J. Biol. Chem. 1999, 274, 10802.
[13] Chen, J. W.; Hu, B.; Qin, H. Y.; Ao, J. P.; Zhang, J.; Zhu, Z. Q. J. Radiat. Res. Radiat. 2006, 24, 137(in Chinese). (陈季武, 胡斌, 秦海燕, 敖军平, 张军, 朱振勤, 辐射研究与辐射工艺学报, 2006, 24, 137.)
[14] Larson, R. A.; Zepp, R. G. Environ. Toxicol. Chem. 2010, 7, 265.
[15] Huang, J. P.; Mabury, S. A. Chemosphere 2000, 41, 1775.
[16] Karmakar, S.; Datta, A. J. Phys. Chem. B 2017, 121, 7621.
[17] Zhang, R.; Sun, P.; Boyer, T. H.; Zhao, L.; Huang, C. Environ. Sci. Technol. 2015, 49, 3056.
[18] Huang, J.; Mabury, S. A. Environ. Toxicol. Chem. 2000, 19, 1501.
[19] Mabury, S. A.; Crosby, D. G. J. Agr. Food. Chem. 1996, 44, 1920.
[20] Mazellier, P.; Leroy, É.; De Laat, J.; Legube, B. New J. Chem. 2002, 26, 1784.
[21] Liu, T.; Yin, K.; Liu, C.; Luo, J.; Crittenden, J.; Zhang, W.; Luo, S.; He, Q.; Deng, Y.; Liu, H.; Zhang, D. Water Res. 2018, 147, 204.
[22] Mazellier, P.; Busset, C.; Delmont, A.; De Laat, J. Water Res. 2007, 41, 4585.
[23] Li, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. Chemosphere 2018, 192, 372.
[24] Poskrebyshev, G. A.; Neta, P.; Huie, R. E. J. Geophys. Res-Atmos. 2001, 106, 4995.
[25] Wei, B.; Sun, J.; Mei, Q.; He, M. X. Comput. Theor. Chem. 2018, 1129, 1.
[26] Liebmann, J.; Karu, E.; Sobanski, N. Atmos. Chem. Phys. 2018, 18, 1.
[27] Maranzana, A.; Ghigo, G.; Tonachini, G. Atmos. Environ. 2017, 167, 181.
[28] Maguta, M. M.; Stenstrom, Y. H.; Nielsen, C. J. J. Phys. Chem. A 2016, 120, 6970.
[29] Musat, R.; Denisov, S. A.; Marignier, J. L.; Mostafavi, M. J. Phys. Chem. B 2018, 122, 2121.
[30] de Sémainville, P. G.; Hoffmann, D.; George, C.; Herrmann, H. Phys. Chem. Chem. Phys. 2007, 9, 958.
[31] Jin, S.; Bi, W.; Li, S.; Dong, W.; Chen, J. J. Phys. Chem. A 2017, 121, 3461.
[32] Exner, M.; Herrmann, H.; Zellner, R. Berichte Der Bunsengesellschaft Für Physikalische Chemie. 2010, 96, 470.
[33] Mezyk, S. P.; Cullen, T. D.; Rickman, K. A.; Mincher, B. J. Int. J. Chem. Kinet. 2017, 49, 635.
[34] Katsumura, Y.; Jiang, P. Y.; Nagaishi, R.; Oishi, T.; Ishigure, K.; Yoshida, Y. J. Phys. Chem (United States). 1991, 95, 4435.
[35] Wine, P. H.; Iii, R. L. M.; Thorn, R. P. J. Phys. Chem. 1988, 92, 1156.
[36] Jarke, F. H.; Ashford, N. A. J. Chem. Phys. 1975, 62, 2923.
[37] Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P. Atmos. Environ. A 1991, 25, 1.
[38] Wan, L. K.; Peng, J.; Lin, M. Z.; Muroya, Y.; Katsumura, Y.; Fu, J. Y. Radiat. Phys. Chem. 2012, 81, 524.
[39] Nguyen, T. L.; Park, J.; Lee, K.; Song, K.; Barker, J. R. J. Phys. Chem. A 2011, 115, 4894.
[40] Neta, P.; Huie, R. E. Meat Technology 1986, 90, 4644.
[41] Umschlag, T.; Zellner, R.; Herrmann, H. Phys. Chem. Chem. Phys. 2002, 4, 2975.
[42] Dong, W. B.; Zhu, C. Z.; Fang, H. J.; Ouyang, B.; Zhang, R. X.; Hou, H. Q. Acta Chim. Sinica 2005, 63, 2147(in Chinese). (董文博, 朱承驻, 房豪杰, 欧阳彬, 张仁熙, 侯惠奇, 化学学报, 2005, 63, 2147.)
[43] Ito, O.; Seiji, A.; Masashi, I. J. Org. Chem. 1989, 54, 2436.
[44] Alfassi, Z. B.; Padmaja, S.; Neta, P.; Huie, R. E. J. Phys. Chem. 1993, 97, 3780.
[45] Mártire, D. O.; Gonzalez, C. Prog. React. Kinet. Mec. 2001, 26, 201.
[46] Brusa, M. A.; Grela, M. A. Phys. Chem. Chem. Phys. 2003, 5, 3294.
[47] Criado, S.; Marioli, J. M.; Allegretti, P. E.; Furlong, J.; Nieto, F. J. R.; Mártire, D. O.; Garcia, N. A. J. Photochem. Photobiol. B 2001, 65, 74.
[48] Kumar, M. R.; Adinarayana, M. J. Chem. Sci. 2000, 112, 551.
[49] Kumar, M. R.; Rao, M. T.; Adinarayana, M. Indian J. Biochem. Bio. 2000, 37, 13.
[50] Huber, J. R.; Hayon, E. J. Phys. Chem. 1968, 71, 3820.
[51] Black, E. D.; Hayon, E. J. Phys. Chem. 1970, 74, 3199.
[52] Ma, J.; Schmidhammer, U.; Mostafavi, M. J. Phys. Chem. B 2015, 119, 7180.
[53] Caregnato, P.; Bertolotti, S. G.; Gonzalez, M. C.; Mártire, D. O. Photochem. Photobiol. 2005, 81, 1526.
[54] Meng, J.; Xiong, X.; Zhang, X.; Xu, Y. Appl. Surf. Sci. 2018, 437, 859.
[55] Subramanian, P. J.; Rajaram, J.; Ramakrishnan, V. Indian J. Chem. 1991, 30, 913.
[56] Maruthamuthu, P.; Taniguchi, H. J. Phys. Chem. (United States) 1977, 81, 1944.
[57] Maruthamuthu, P. J. Chem. Soc., Faraday Trans. 11985, 81, 1979.
[58] Villata, L. S.; Gonzalez, M. C.; Mártire, D. O. Int. J. Chem. Kinet. 2010, 42, 391.
[59] Rosso, J. A.; Allegretti, P. E.; Mártire, D. O.; Gonzalez, M. C. J. Chem. Soc., Perkin Trans. 21999, 2, 205.
[60] Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 1027.
[61] Khan, J. A.; He, X.; Khan, H. M.; Dionysiou, D. D. Chem. Eng. J. 2013, 218, 376.
[62] Wang, A. J.; He, J. M.; Kong, L. N.; Zhang, N. D. Res. Chem. Intermed. 2017, 43, 2175.
[63] Oncu, N. B.; Mercan, N.; Balcioglu, I. A. Chem. Eng. J. 2015, 259, 972.
[64] Liang, Q.; Duan, Y. M.; Wu, B. B.; Zhang, N. D. J. Adv. Oxid. Technol. 2016, 19, 372.
[65] Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705.
[66] Lou, X. Y.; Guo, Y. G.; Xiao, D. X. Environ. Sci. Pollut. R. 2013, 20, 6317.
[67] Zhang, N. D.; Zhu, Z. J.; Luan, W. L. Acta Chim. Sinica 2011, 69, 2307(in Chinese). (张乃东, 朱正江, 栾万利, 化学学报, 2011, 69, 2307.)
[68] He, J. M.; Kong, L. N.; Liang, Q.; Zhang, N. D. China Environ. Sci. 2016, 36, 2638(in Chinese). (贺俊梅, 孔令娜, 梁倩, 张乃东, 中国环境科学, 2016, 36, 2638.)
[69] Wang, B.; Li, J.; Mo, Z. P.; Xian, B. Environ. Eng. 2012, 30, 53(in Chinese). (王兵, 李娟, 莫正平, 鲜波, 环境工程, 2012, 30, 53.)
[70] Liu, H. X.; Zhang, N. D.; Zhu, Z. J. Chin. Sci. Bull. 2012, 57, 3493(in Chinese). (刘衡锡, 张乃东, 朱正江, 科学通报, 2012, 57, 3493.)
[71] Liu, C.; Wu, B.; Chen, X. E. Chem. Eng. J. 2018, 335, 865.
[72] Tang, Y.; Thorn, R. P.; Iii, R. L. M. J. Photoch. Photobio. A 1988, 44, 243.
[73] Morimoto, S.; Ito, T.; Fujita, S. I. Chem. Phys. Lett. 2008, 461, 300.
[74] Huang, Y. F.; Huang, Y. H. J. Hazard. Mater. 2009, 162, 1211.
[75] Clément, J. L.; Gilbert, B. C.; Ho, W. F.; Jackson, N. D.; Newton, M. S.; Silvester, S.; Timmins, G. S.; Tordo, P.; Whitwood, A. C. J. Chem. Soc., Perkin Trans. 21998, 8, 1715.
[76] Chawla, O. P.; Fessenden, R. W. J. Phys. Chem. 1975, 79, 2693.
/
〈 |
|
〉 |