Review

New Progress in Molecular Electronics

  • Xu Xiaona ,
  • Han Bin ,
  • Yu Xi ,
  • Zhu Yanying
Expand
  • a Yanshan University, Qinhuangdao 066004, China;
    b Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China

Received date: 2019-01-10

  Online published: 2019-03-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21773169).

Abstract

Molecular-scale electronics studies the charge transport properties across molecules by constructing "elec-trode-molecule-electrode" junctions based on the molecular electrodes and single molecule or small amounts of molecular aggregates. It examines the structure-property relationship between the physical and chemical properties of the molecule and the charge transport by combining the intrinsic chemical properties of molecule with device architecture, reveals the micro-scale quantum transport mechanics principle, and explores molecular-based functional electronic devices. It is a research field that integrates chemistry, physics and microelectronics. In this review, we summarize some of the representative progress of molecular electronics in basic research (device preparation, transport mechanism) and applications in recent years.

Cite this article

Xu Xiaona , Han Bin , Yu Xi , Zhu Yanying . New Progress in Molecular Electronics[J]. Acta Chimica Sinica, 2019 , 77(6) : 485 -499 . DOI: 10.6023/A19010019

References

[1] Feynman, R. Engineering and Science 1960, 23, 8.
[2] Ratner, M. A.; Aviram, A. Chem. Phys. Lett. 1974, 29, 277.
[3] Jiang, L.; Huang, G. F.; Li, H. X.; Li, X. F.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Prog. Chem. 2005, 17, 172(in Chinese). (江浪, 黄桂芳, 李洪祥, 李小凡, 胡文平, 刘云圻, 朱道本, 化学进展, 2005, 17, 172.)
[4] Ai, Y.; Zhang, H. L. Acta Phys-Chim. Sin. 2012, 28, 2237. (in Chinese). (艾勇, 张浩力, 物理化学学报, 2012, 28, 2237.)
[5] Zhou, C.; Reed, M. A.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 3.
[6] Yang, W. R.; Jones, M. W.; Li, X.; Eggers, P. K.; Tao, N. J.; Gooding, J.; Paddon-Row, M. N. J. Phys. Chem. C 2008, 112, 9072.
[7] Vilan, A.; Aswal, D.; Cahen, D. Chem. Rev. 2017, 117, 4248.
[8] Chen, S.; Liu, Y.; Chen, J. Chem. Soc. Rev. 2014, 43, 5372.
[9] Sun, L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Chem. Soc. Rev. 2014, 43, 7378.
[10] Kuo, C. T.; Su, L. C.; Chen, C. H. J. Am. Chem. Soc. 2014, 61, 101.
[11] Ratner, M. Nature Nanotech. 2013, 8, 378.
[12] Zimbovskaya, N. A.; Pederson, M. R. Phys. Rep. 2011, 509, 1.
[13] Aradhya, S. V.; Venkataraman, L. Nature Nanotech. 2013, 8, 399.
[14] Claridge, S. A.; Schwartz, J. J.; Weiss, P. S. ACS Nano 2011, 5, 693.
[15] Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583.
[16] Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429.
[17] Heath, J. R. Annu. Rev. Mater. Res. 2009, 39, 1.
[18] Poulsen, K. M.; Bjornholm, T. Nature Nanotech. 2009, 4, 551.
[19] McCreery, R. L.; Bergren, A. J. Adv. Mater. 2009, 21, 4303.
[20] Akkerman, H. B.; de Boer, B. J. Phys. Condens. Matter. 2008, 20, 013001.
[21] Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384.
[22] Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Rev. Mater. 2016, 1, 16002.
[23] Zhang, X.; Li, T. Chin. Chem. Lett. 2017, 28, 2058.
[24] Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.
[25] Cuevas, J. C.; Scheer, E. Molecular Electronics, 2nd ed., USA:World Scientific Publishing Co, 2017, pp. 1~826.
[26] Li, J. C.; Wu, J. Z.; Zhou, C.; Gong, X. Acta Phys.-Chim. Sin. 2013, 29, 1123(in Chinese). (李建昌, 吴隽稚, 周成, 宫兴, 物理化学学报, 2013, 29, 1123).
[27] Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36, 9(in Chinese). (杨扬, 刘俊扬, 晏润文, 田中群, 高等学校化学学报, 2015, 36, 9).
[28] Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N. J. Annu. Rev. Phys. Chem. 2007, 58, 535.
[29] Xu, B. Q.; Tao, N. J. Science 2003, 301, 1221.
[30] Guo, S.; Hihath, J.; Diez-Perez, I.; Tao, N. J. J. Am. Chem. Soc. 2011, 133, 19189.
[31] Baldea, I. Phys. Rev. B 2012, 85, 9222.
[32] Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. J. Am. Chem. Soc. 2006, 128, 15874.
[33] Hines, T.; Diez-Perez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. J. Am. Chem. Soc. 2013, 135, 3319.
[34] Li, H.; Su, T. A.; Zhang, V.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2015, 137, 5028.
[35] Dell, E. J.; Capozzi, B.; DuBay, K. H.; Berkelbach, T. C.; Moreno, J. R.; Reichman, D. R.; Venkataraman, L.; Campos, L. M. J. Am. Chem. Soc. 2013, 135, 11724.
[36] Wold, D. J.; Frisbie, C. D. J. Am. Chem. Soc. 2000, 122, 2970.
[37] Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Nat. Mater. 2012, 11, 872.
[38] Nazin, G. V.; Wu, S. W.; Ho, W. PNAS 2005, 102, 8832.
[39] Zhou, J.; Chen, F.; Xu, B. Q. J. Am. Chem. Soc. 2009, 131, 10439.
[40] Zhou, J.; Chen, G.; Xu, B. Q. J. Phys. Chem. C 2010, 114, 8587.
[41] Moreland, J.; Ekin, J. W. J. Appl. Phys. 1985, 58, 3888.
[42] Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Phys. Rev. Lett. 1992, 69, 140.
[43] Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748.
[44] Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Nano Lett. 2013, 13, 2809.
[45] Holmlin, R. E.; Ismagilov, R. F.; Haag, R.; Mujica, V.; Ratner, M. A.; Rampi, M. A.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2001, 40, 2316.
[46] Thuo, M. M.; Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Kim, C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 2962.
[47] Nijhuis, C. A.; Reus, W. F.; Barber, J. R.; Dickey, M. D.; Whitesides, G. M. Nano Lett. 2010, 10, 3611.
[48] Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2008, 47, 142.
[49] Senthil kumar, K.; Jiang, L.; Nijhuis, C. A. RSC Adv. 2017, 7, 14544.
[50] Walker, A. V.; Tighe, T. B.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. J. Phys. Chem. B 2005, 109, 11263.
[51] Mahmoud, A. M.; Bergren, A. J.; Pekas, N.; McCreery, R. L. Adv. Funct. Mater. 2011, 21, 2273.
[52] Zhu, Z.; Daniel, T. A.; Maitani, M.; Cabarcos, O. M.; Allara, D. L.; Winograd, N. J. Am. Chem. Soc. 2006, 128, 13710.
[53] Walker, A. V.; Tighe, T. B.; Cabarcos, O. M.; Reinard, M. D.; Haynie, B. C.; Uppili, S.; Winograd, N.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 3954.
[54] DeIonno, E.; Tseng, H. R.; Harvey, D. D.; Stoddart, J. F.; Heath, J. R. J. Phys. Chem. B 2006, 110, 7609.
[55] Bonifas, A. P.; McCreery, R. L. Nat. Nanotechnol. 2010, 5, 612.
[56] Honciuc, A.; Metzger, R. M.; Gong, A.; Spangler, C. W. J. Am. Chem. Soc. 2007, 129, 8310.
[57] Bonifas, A. P.; McCreery, R. L. Nano Lett. 2011, 11, 4725.
[58] Akkerman, H. B.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Nature 2006, 441, 69.
[59] Katsouras, I.; Piliego, C.; Blom, P. W. M.; Leeuwa, D. M. Nanoscale 2013, 5, 9882.
[60] Puebla-Hellmann, G.; Venkatesan, K.; Mayor, M.; Lörtscher, E. Nature 2018, 559, 232.
[61] Noy, G.; Ophir, A.; Selzer, Y. Angew. Chem., Int. Ed. Engl. 2010, 49, 5734.
[62] Rigaut, S. Dalton Trans. 2013, 42, 15859.
[63] Choi, S. H.; Kim, B.; Frisbie, C. D. Science 2008, 320, 1482.
[64] Wang, W.; Lee, T.; Reed, M. A. Phys. Rev. B 2003, 68, 035416-1.
[65] Jeremy, B. K.; Beebe, M.; Frisbie, C. D.; Kushmerick, J. G. ACS Nano 2008, 2, 827.
[66] Vilan, A.; Cahen, D.; Kraisler, E. ACS Nano 2013, 7, 695.
[67] Huisman, E. H.; Guedon, C. M.; Wees, B. J.; van der Molen, S. J. Nano Lett. 2009, 9, 3909.
[68] Jia, C. C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642.
[69] Baldea, I.; Xie, Z.; Frisbie, C. D. Nanoscale 2015, 7, 10465.
[70] Widawsky, J. R.; Kamenetska, M.; Klare, J.; Nuckolls, C.; Stei-gerwald, M. L.; Hybertsen, M. S.; Venkataraman, L. Nanotechnology 2009, 20, 434009.
[71] Lee, W.; Reddy, P. Nanotechnology 2011, 22, 485703.
[72] Baldea, I. Nanoscale. 2013, 5, 9222.
[73] Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D. W.; Grubisha, D. S.; Bennett, D. W. Chem. Phys. Lett. 1999, 313, 741.
[74] Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 4052.
[75] Choi, S. H.; Risko, C.; Delgado, M. C. R.; Kim, B.; Bredas, J. L.; Frisbie, C.D. J. Am. Chem. Soc. 2010, 132, 4358.
[76] Hill, M. G.; Treadway, C. R.; Barton, J. K. Chem. Phys. 2002, 281, 409.
[77] Kelley, S. O.; Barton, J. K. Science 1999, 283, 375.
[78] Eley, D. D.; Spivey, D. I. Trans. Faraday Soc. 1962, 58, 411.
[79] Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642.
[80] Xiang, L.; Palma, J. L.; Bruot, C.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Chem. 2015, 7, 221.
[81] Bostick, C. D.; Mukhopadhyay, S.; Pecht, I.; Sheves, M.; Cahen, D.; Lederman, D. Rep. Prog. Phys. 2018, 81, 026601.
[82] Amdursky, N.; Marchak, D.; Sepunaru, L.; Pecht, I.; Sheves, M.; Cahen, D. Adv. Mater. 2014, 26, 7142.
[83] Andrews. D. Q.; Solomon, G. C.; Goldsmith, R. H.; Hansen, T.; Wasielewski, M. R.; Duyne, R. P.; Ratner, M. A. J. Am. Chem. Soc. 2008, 130, 17301.
[84] Hong, W. J.; Valkenier, H.; Meszaros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; Garcia, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. Beilstein J. Nanotechnol. 2011, 2, 699.
[85] Fracasso, D.; Valkenier, H.; Hummelen, J. C.; Solomon, G. C.; Chiechi, R. C. J. Am. Chem. Soc. 2011, 133, 9556
[86] Guedon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; Molen, S. J. Nat. Nanotechnol. 2012, 7, 304..
[87] Rabache, V.; Chaste, J.; Petit, P.; Della Rocca, M. L.; Martin, P.; Lacroix, J. C.; McCreery, R. L.; Lafarge, P. J. Am. Chem. Soc. 2013, 135, 10218.
[88] Manrique, D. Z.; Huang, C.; Baghernejad, M.; Zhao, X.; AlOwaedi, O. A.; Sadeghi, H.; Kaliginedi, V.; Hong, W. J.; Wandlowski, M.; Gulcur, T.; Bryce, M. R.; Lambert, C. J. Nat. Commun. 2015, 6, 6389.
[89] Liu, X. S.; Sangtarash, S.; Reber, D.; Zhang, D.; Sadeghi, H.; Shi, J.; Xiao, Z.; Hong, W. J.; Lambert, C. J.; Liu, S. X. Angew. Chem., Int. Ed. Engl. 2017, 56, 173.
[90] Zhang, P.; Chen, L. C.; Zhang, Z. Q.; Cao, J. J.; Tang, C.; Liu, J.; Duan, L. L.; Huo, Y.; Shao, X.; Hong, W. J.; Zhang, H. L. J. Am. Chem. Soc. 2018, 140, 6531.
[91] Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; Liu, J.; Yang, Y.; Shi, J.; Meszaros, G.; Chen, W.; Lambert, C.; Hong, W. J. Nat. Mater. 2019.
[92] Liu, J.; Huang, X.; Wang, F.; Hong, W. J. Acc. Chem. Res. 2019, 52, 151.
[93] Dong, H.; Deng, N.; Chen, P. Y. World Science and Technology Research and Development 2005, 27, 1(in Chinese). (董浩, 邓宁, 陈培毅, 世界科技研究与发展, 2005, 27, 1).
[94] Dhirani, A.; Lin, P. H.; Sionnest, P. G.; Zehner, R. W.; Sita, L. R. J. Chem. Phys. 1997, 106, 6.
[95] Metzger, R. M.; Xu, T.; Peterson, I. R. J. Phys. Chem. B 2001, 105, 7280.
[96] Diez-Perez, I.; Hihath, J.; Lee, Y.; Yu, L.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. J. Nat. Chem. 2009, 1, 635.
[97] Kushmerick, J. G.; Whitaker, C. M.; Pollack, S. K.; T Schull,. L.; Shashidhar, R. Nat. Nanotechnol. 2004, 15, S489.
[98] Wang, K.; Zhou, J.; Hamill, J. M.; Xu, B. Q. J. Chem. Phys. 2014, 141, 054712.
[99] Batra, A.; Darancet, P.; Chen, Q.; Meisner, J. S.; Widawsky, J. R.; Neaton, J. B.; Nuckolls, C.; Venkataraman, L. Nano Lett. 2013, 13, 6233.
[100] Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc. 2010, 132, 18386.
[101] Nijhuis, C. A.; Reus, W. F.; Siegel, A. C.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 15397.
[102] Chen, X.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; Del Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2017, 12, 797.
[103] Katsonis, N.; Kudernac, T.; Walko, M.; Molen, S. J.; Wees, B. J.; Feringa, B. L. Adv. Mater. 2006, 18, 1397.
[104] Ikeda, M.; Tanifuji, N.; Yamaguchi, H.; Irie, M.; Matsuda, K. Chem. Commun. 2007, 1355.
[105] Whalley, A. C.; Steigerwald, M. L.; Guo, X. F.; Nuckolls, C. J. Am. Chem. Soc. 2007, 129, 12590.
[106] Jia, C.; Wang, J.; Yao, C.; Cao, Y.; Zhong, Y.; Liu, Z.; Liu, Z.; Guo, X. F. Angew. Chem., Int. Ed. Engl. 2013, 52, 8666.
[107] Migliore, A.; Jia, C. C.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y.; Liu, Z. R.; Zhang, G. Y.; Qu, D. H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. F. Science 2016, 352, 1443.
[108] Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Nature 2003, 424, 654.
[109] Cui, Y.; Lieber, C. M. Science 2001, 291, 851.
[110] Damle, P.; Rakshit, T.; Paulsson, M.; Datta, S. IEEE T. Nanotechnol. 2002, 1, 145.
[111] Xu, B. Q.; Xiao, X. Y.; Yang, X. M.; Zang, L.; Tao, N. J. J. Am. Chem. Soc. 2005, 127, 2386.
[112] Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.
[113] Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Ali-aga-Alcalde, N.; Vandersypen, L. M.; van der Zant, H. S. Nano Lett. 2011, 11, 4607.
[114] Ohshiro, T.; Tsutsui, M.; Yokota, K.; Furuhashi, M.; Taniguchi, M.; Kawai, T. Nat. Nanotechnol. 2014, 9, 835.
[115] Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D.; Guo, X. F. Sci. Adv. 2018, 4, 2177.
[116] Bergren, A. J.; Zeer-Wanklyn, L.; Semple, M.; Pekas, N.; Szeto, B.; McCreery, R. L. J. Phys. Condens. Matter. 2016, 28, 094011.
[117] McCreery, R. L.; Bergren, A.; Morteza-Najarian, A.; Sayed, S. Y.; Yan, H. Faraday Discuss 2014, 172, 9.
[118] Rincon-Garcia, L.; Evangeli, C.; Rubio-Bollinger, G.; Agrait, N. Chem. Soc. Rev. 2016, 45, 4285.
[119] Kim, Y.; Song, H. Appl. Spectrosc. Rev. 2016, 51, 603.
[120] Xiang, D.; Sydoruk, V.; Vitusevich, S.; Petrychuk, M. V.; Offenhaeusser, A.; Kochelap, V. A.; Belyaev, A. E.; Mayer, D. Appl. Phys. Lett. 2015, 106, 063702-1.

Outlines

/