Pc-carbon:A Possible Superhard Monoclinic Carbon Allotrope
Received date: 2019-01-09
Online published: 2019-04-02
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51472208, 51772300).
In this paper, we predicted a superhard carbon phase (Pc-carbon) by using CALYPSO software. The crystal structure belongs to monoclinic system with the space group Pc. We have studied the electronic and mechanical properties of Pc-carbon by first principles calculations. The calculated total energy per atom of Pc-carbon have a minimum value of -8.08 eV, confirming that the optimized structure is stable. And the minimum total energy per atom of Pc-carbon is higher than diamond and graphite, suggesting that the Pc-carbon should be thermodynamically metastable comparing diamond and graphite. There are no imaginary frequency throughout the entire Brillouin zone in the phonon dispersion, confirming the dynamical stability of Pc-carbon up to 100 GPa. The elastic constants of Pc-carbon follow the Born mechanical stability criteria, demonstrating the mechanical stability of Pc-carbon. The calculated B/G value and Poisson's ratio show that Pc-carbon is brittle. The calculated Vickers hardness value of Pc-carbon is 87.6 GPa, which is much larger than the minimal value for a superhard materials (40 GPa), indicating Pc-carbon is a potential superhard material. The Vickers hardness of Pc-carbon is less than that of diamond and M-carbon, but is comparable to that of bct-C4 and Ibam-C. In addition, the ideal tensile and shear strengths of Pc-carbon (65.8 and 56.5 GPa) are comparable to those of c-BN (55.3 and 58.3 GPa), suggesting that Pc-carbon may have similar tensile and shear resistance to c-BN. The elastic anisotropy index AU is 0.35, indicating that Pc-carbon is elastic anisotropic; the fractional anisotropy ratio of bulk modulus AB and shear modulus AG are 0.010 and 0.032, suggesting that the bulk modulus and shear modulus of Pc-carbon are all elastic anisotropic. The hydrostatic calculations of Pc-carbon indicate that Pc-carbon have excellent incompressibility as the pressure is increased up to 100 GPa. And Pc-carbon is an ultra-incompressible material like other carbon allotropes. The calculated band gap of Pc-carbon is estimated to be 0.99 eV, indicating that Pc-carbon is an indirect band gap semiconductor. The PDOS of Pc-carbon reflects significant sp3 hybridization between atomic orbitals, which leads to the superhard properties of Pc-carbon. Therefore, Pc-carbon is a potential superhard semiconductor material.
Cao Ai-Hua , Wu Bo , Gan Li-Hua . Pc-carbon:A Possible Superhard Monoclinic Carbon Allotrope[J]. Acta Chimica Sinica, 2019 , 77(5) : 455 -460 . DOI: 10.6023/A19010017
[1] Hanfland, M.; Beister, H.; Syassen, K. Phys. Rev. B 1989, 39, 12598.
[2] Bundy, F. P.; Bassett, W. A.; Weathers, M. S.; Hemley, R. J.; Mao, H. K.; Goncharov, A. F. Carbon 1996, 34, 141.
[3] Kroto, H. W.; Heath, J. R.; O'brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
[4] Iijima, S. Nature 1991, 354, 56.
[5] Li, Q.; Ma, Y. M.; Oganov, A. R.; Wang, H. B.; Wang, H.; Xu, Y.; Cui, T.; Mao, H. K.; Zou, G. Phys. Rev. Lett. 2009, 102, 175506.
[6] Mao, W. L.; Mao, H.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C.; Heinz, D. L.; Shu, J.; Meng, Y.; Hemley, R. J. Science 2003, 302, 425.
[7] Umemoto, K.; Wentzcovitch, R. M.; Saito, S.; Miyake, T. Phys. Rev. Lett. 2010, 104, 125504.
[8] Sheng, X. L.; Yan, Q. B.; Ye, F.; Zheng, Q. R.; Su, G. Phys. Rev. Lett. 2011, 106, 155703.
[9] Wang, J. T.; Chen, C. F.; Kawazoe, Y. Phys. Rev. Lett. 2011, 106, 075501.
[10] Wang, J. T.; Chen, C. F.; Kawazoe, Y. Phys. Rev. B 2012, 85, 033410.
[11] Wei, Q.; Zhang, M. G.; Yan, H. Y.; Lin, Z. Z.; Zhu, X. M. EPL 2014, 107, 27007.
[12] Cao, A. H.; Zhao, W. J.; Zhou, Q. Y.; Liu, S. L.; Gan, L. H. Chem. Phys. Lett. 2019, 714, 119.
[13] Eberhart, R.; Kennedy, J. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Japan, 1995, p. 39.
[14] Wang,Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Comput. Phys. Commun. 2012, 183, 2063.
[15] Wang, H.; Wang, Y. C.; Lv, J.; Li, Q.; Zhang, L. J.; Ma, Y. M. Comput. Mater. Sci. 2016, 112, 406.
[16] Shi, S. Q; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C. Y.; Xiao, R. J. Chin. Phys. B 2016, 25, 018212.
[17] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
[18] Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
[19] Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
[20] Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys. Condens. Matter. 2002, 14, 2717.
[21] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[22] Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
[23] Kittel, C. Introduction to Solid State Physics, John Wiley & Sons, New York, 1996.
[24] Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Phys. Rev. B 2007, 76, 054115.
[25] Hill, R. Proc. Phys. Soc. 1952, 65, 349.
[26] Pugh, S. F. Philos. Mag. 1954, 45, 833.
[27] Frantsevich, I. N.; Voronov, F. F.; Bokuta, S. A. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Naukova Dumka, Kiev, 1983, pp. 60~180.
[28] Gao, F. M.; He, J. L.; Wu, E. D.; Liu, S. M.; Yu, D. L.; Li, D. C.; Zhang, S. Y.; Tian, Y. J. Phys. Rev. Lett. 2003, 91, 015502.
[29] Andrievski, R. A.; Refract, I, J. Met. Hard Mater. 2001, 19, 447.
[30] Ranganathan, S. I.; Ostoja-Starzewski, M. Phys. Rev. Lett. 2008, 101, 055504.
[31] Chung, D. H.; Buessem, W. R. J. Appl. Phys. 1967, 38, 2010.
[32] Nye, J. F. Physical Properties of Crystals:Their Representation by Tensors and Matrices, Oxford University Press, 1985.
[33] Zhang, R. F.; Veprek, S. Phys. Rev. B 2008, 77, 172103.
/
〈 |
|
〉 |