Article

Preparation and Adsorption Application Study of Fluorine-containing Conjugated Microporous Polymers

  • Yue Yong ,
  • Qian Zhiqi ,
  • Kong Fanan ,
  • Xiao Qin ,
  • Ren Shijie
Expand
  • College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

Received date: 2019-02-22

  Online published: 2019-04-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21574087, 21404074) and the State Key Laboratory of Polymer Materials Engi-neering (No. Sklpme2018-2-05).

Abstract

Water pollution arising from ever-growing domestic sewage and industrial organic pollutants has caused severe environmental and ecological problems in many parts of the world. It is urgent to seek appropriate ways to resolve oily wastewater and organic solvent pollution. Currently, physical adsorption is considered to be one of the most important methods to eliminate the oil contaminations in water thanks to its high efficiency and low cost. However, traditional adsorbent materials, such as activated carbon, zeolite and natural fibers, often suffer from low adsorption capacities, poor adsorption selectivity and recyclability. Thus, it is still of great importance to develop new absorbent materials for the separation and removal of oils or organic pollutants from water to address environmental issues. Conjugated microporous polymers (CMPs) are a class of organic porous polymers that have attracted extensive attention thanks to their large specific surface area, good physicochemical stability and unique extended π-conjugation along the polymer skeleton. Here we report a fluorine-containing conjugated microporous polymer (F-CMP), which was synthesized via Sonogashira cross-coupling reaction from 1,3,5-trifluoro-2,4,6-triiodobenzene and 1,3,5-triethynylbenzene. As a comparison, fluorine-free conjugated microporous polymer (H-CMP) was synthesized in the same condition from 1,3,5-tribromobenzene and 1,3,5-triethynybenzene. By introducing fluorine atom into the conjugated microporous skeleton, the contact angle of F-CMP with water reaches 145°, exhibiting excellent hydrophobicity. Nitrogen adsorption/desorption isotherms of the F-CMP show a high specific surface area of 638 m2·g-1, and the pore size distribution analysis shows the existence of both micropores and macropores. It can be obtained by adsorption experiments of oil and organic solvents that the adsorption capability of F-CMP increases significantly compared with its fluorine-free counterpart with similar structural skeleton. Due to high hydrophobicity and porous properties, F-CMP shows excellent adsorption properties towards to the removal of organic solvents and oils. The adsorption capability of F-CMP towards pump oil and chloroform can reach 40 g/g and 43 g/g, respectively. Meanwhile, F-CMP shows rapid adsorption rate and excellent adsorption recyclability. Thus, F-CMP displays promising application prospects in the field of organic pollutant adsorption and environmental remediation.

Cite this article

Yue Yong , Qian Zhiqi , Kong Fanan , Xiao Qin , Ren Shijie . Preparation and Adsorption Application Study of Fluorine-containing Conjugated Microporous Polymers[J]. Acta Chimica Sinica, 2019 , 77(6) : 500 -505 . DOI: 10.6023/A19020066

References

[1] Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301.
[2] Doshi, B.; Sillanpaa, M.; Kalliola, S. Water Res. 2018, 135, 262.
[3] Gupta, S.; Tai, N. H. J. Mater. Chem. A 2016, 4, 1550.
[4] Lei, E.; Li, W.; Ma, C.; Liu, S. Mater. Chem. Phys. 2018, 214, 291.
[5] Mohan, D.; Singh, K. P.; Singh, V. K. J. Hazard Mater. 2008, 152, 1045.
[6] Sakthivel, T.; Reid, D. L.; Goldstein, I.; Hench, L.; Seal, S. Environ. Sci. Technol. 2013, 47, 5843.
[7] Likon, M.; Remskar, M.; Ducman, V.; Svegl, F. J. Environ. Manage. 2013, 114, 158.
[8] Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, J.; Qiu, F.; Pan, J. Chem. Eng. J. 2017, 309, 7.
[9] Chin, S. F.; Binti, R. A. N.; Pang, S. C. Mater. Lett. 2014, 115, 241.
[10] Ong, C. C.; Sundera, M. S.; Mohamed, N. M.; Perumal, V.; Mohamed, S. M. S. ACS Omega. 2018, 3, 15907.
[11] Ji, C.; Zhang, K.; Li, L.; Chen, X.; Hu, J.; Yan, D.; Xiao, G.; He, X. J. Mater. Chem. A 2017, 5, 11263.
[12] Peng, D.; Jiang, W.; Li, F. F.; Zhang, L.; Liang, R. P.; Qiu, J. D. ACS Sustainable Chem. Eng. 2018, 6, 11685.
[13] Dawson, R.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Macromolecules 2009, 42, 8809.
[14] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[15] Yan, T. T.; Xing, G. L.; Ben, T. Acta Chim. Sinica 2018, 76, 366. (闫婷婷, 邢国龙, 贲腾, 化学学报, 2018, 76, 366.)
[16] Pang, C.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606. (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[17] Yu, S.; Xu, Y. J.; Jiang, J. X.; Ren, S. J. Acta Chim. Sinica 2015, 73, 629. (于森, 徐雍捷, 蒋加兴, 任世杰, 化学学报, 2015, 73, 629.)
[18] Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
[19] Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.
[20] Chen, Q.; Liu, D. P.; Luo, M.; Feng, L. J.; Zhao, Y. C.; Han, B. H. Small 2014, 10, 308.
[21] Wang, X.; Chen, B.; Dong, W.; Zhang, X.; Li, Z.; Xiang, Y.; Chen, H. Macromol. Rapid Commun. 2018, e1800494.
[22] Kong, S. N.; Malik, A. U.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 656. (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 656.)
[23] Kong, S. N.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 2754. (孔胜男, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 2754.)
[24] Xu, Y. J.; Wu, S. P.; Ren, S. J.; Ji, J.; Yue, Y.; Shen, J. J. RSC Adv. 2017, 7, 32496.
[25] He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202. (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
[26] Liao, Y.; Cheng, Z.; Zuo, W.; Thomas, A.; Faul, C. F. J. ACS Appl. Mater. Interfaces 2017, 9, 38390.
[27] Bildirir, H.; Osken, I.; Ozturk, T.; Thomas, A. Chemistry 2015, 21, 9306.
[28] Qiu, F.; Zhao, W.; Han, S.; Zhuang, X.; Lin, H.; Zhang, F. Polymers 2016, 8, 191.
[29] Yang, R. X.; Wang, T. T.; Deng, W. Q. Sci. Rep. 2015, 5, 10155.
[30] Lee, J. S. M.; Wu, T. H.; Alston, B. M.; Briggs, M. E.; Hasell, T.; Hu, C. C.; Cooper, A. I. J. Mater. Chem. A 2016, 4, 7665.
[31] Qin, L.; Xu, G. j.; Yao, C.; Xu, Y. Polym. Chem. 2016, 7, 4599.
[32] Cha, M. C.; Lim, Y.; Choi, T. J.; Chang, J. Y. Macromol. Chem. Phys. 2017, 218, 1700219.
[33] Shen, X.; He, J.; Wang, K.; Li, X.; Wang, X.; Yang, Z.; Wang, N.; Zhang, Y.; Huang, C. ChemSusChem 2019, 12, 1342.
[34] Zhao, X.; Wu, M.; Liu, Y.; Cao, S. Org. Lett. 2018, 20, 5564.
[35] Ju, Z.; Zhang, S.; Xing, Z.; Zhuang, Q.; Qiang, Y.; Qian, Y. ACS Appl. Mater. Interfaces 2016, 8, 20682.
[36] Wang, X.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.
[37] Xu, L.; Xiao, G.; Chen, C.; Li, R.; Mai, Y.; Sun, G.; Yan, D. J. Mater. Chem. A 2015, 3, 7498.
[38] Wenk, H. H.; Sander, W. Eur. J. Org. Chem. 2002, 3927.

Outlines

/