Activation of S—H and N—H Bonds to Synthesize Sulfinamides via Cross Coupling Hydrogen Evolution
Received date: 2019-03-06
Online published: 2019-04-22
Supported by
Project supported by the Ministry of Science and Technology of China(2017YFA0206903);the National Natural Science Foundation of China(91427303);the National Natural Science Foundation of China(21861132004);the Strategic Priority Research Program of the Chinese Academy of Science(XDB17000000);Key Research Program of Frontier Sciences of the Chinese Academy of Science(QUZDY-SSW-JSC029);K. C. Wong Education Foundation
Catalytic synthesis of organic sulfinamides has great significance and value in organic synthesis, material science, and bioscience. Traditional synthetic methods for sulfinamides are often confronted with various challenges, such as tedious reaction steps, harsh reaction conditions. Direct activation of S—H and N—H bonds to synthesis sulfinamides is the most effective and atomic economic way, which can realize the N—S bonds construction without pre-functionalization of the substrates. To establish a versatile and efficient technology for such reaction, an electrochemical cross coupling hydrogen evolution (CCHE) reaction, which is often used as an environmentally friendly and efficient way to construct new bonds, for synthesis of sulfinamides has been successfully developed by using thiols and amines as the easily available and inexpensive substrates. A series of sulfinamides were prepared with excellent yields and good compatibility of functional groups under extremely mild reaction conditions. Experimental results showed that sulfenamides, which were constructed as intermediate products via radical pathway, were further oxidized to sulfinamides. H2 18O labeling experiment confirmed that the oxygen of sulfinyl group comes from the trace water in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). In addition, tetrabutylammonium iodide (TBAI) played important dual roles of intermediate and electrolyte in this reaction system. The typical procedure is as follows: A 20 mL oven-dried reaction vital equipped with a magnetic stir bar was charged with thiol 1 (0.2 mmol), amine 2 (0.3 mmol) and TBAI (0.05 mol/L) in HFIP (5 mL), and exhausted via puncture needle for 15 minutes with argon. The mixture was then electrolysed with carbon foam plate (anode) and platinum plate (cathode) as the electrodes in an undivided cell for 6 hours in 10 mA constant current at room temperature. After the reaction, the mixture was evaporated under reduced pressure to remove the solvent and the residue was purified by chromatography on silica gel to get the desired sulfinamide 3.
Wen-Qiang Liu, , Xiu-Long Yang, , Chen-Ho Tung, , Li-Zhu Wu, . Activation of S—H and N—H Bonds to Synthesize Sulfinamides via Cross Coupling Hydrogen Evolution[J]. Acta Chimica Sinica, 2019 , 77(9) : 861 -865 . DOI: 10.6023/A19030077
[1] | (a) Sola, J.; Reves, M.; Riera, A.; Verdaguer, X . Angew. Chem. Int. Ed. 2007, 46, 5020. |
[1] | (b) Beck, E. M.; Hyde, A. M.; Jacobsen, E. N. Org. Lett. 2011, 13, 4260. |
[1] | (c) Viso, A.; de la Pradilla, R. F.; Urena, M.; Bates, R. H.; del Aguila, M. A.; Colomer, I . J. Org. Chem. 2012, 77, 525. |
[1] | (d) Zhang, Z. M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L . Angew. Chem. Int. Ed. 2014, 53, 4350. |
[1] | (e) Fjelbye, K.; Svenstrup, N.; Puschl, A . Synthesis-Stuttgart 2015, 47, 3231. |
[1] | (f) Su, X.; Zhou, W.; Li, Y. Y.; Zhang, J. L . Angew. Chem. Int. Ed. 2015, 54, 6874. |
[1] | (g) Zhou, W.; Su, X.; Tao, M. N.; Zhu, C. Z.; Zhao, Q. J.; Zhang,, J. L . Angew. Chem. Int. Ed. 2015, 54, 14853. |
[1] | (h) Chelouan, A.; Recio, R.; Borrego, L. G.; Alvarez, E.; Khiar, N.; Fernandez, I . Org. Lett. 2016, 18, 3258. |
[2] | (a) Moree, W. J.; Vandermarel, G. A.; Liskamp, R. M. J . Tetrahedron Lett. 1991, 32, 409. |
[2] | (b) Viswanadhan, V. N.; Ghose, A. K.; Hanna, N. B.; Matsumoto, S. S.; Avery, T. L.; Revankar, G. R.; Robins, R. K. J. Med. Chem. 1991, 34, 526. |
[2] | (c) Carreno, M. C.. Chem. Rev. 1995, 95, 1717. |
[2] | (d) Khiar, N.; Werner, S.; Mallouk, S.; Lieder, F.; Alcudia, A.; Fernández, I . J. Org. Chem. 2009, 74, 6002. |
[2] | (e) Chelouan, A.; Recio, R.; Borrego, L. G.; Alvarez, E.; Khiar, N.; Fernandez, I . Org. Lett. 2016, 18, 3258. |
[3] | (a) Andreassen, T.; Lorentzen, M.; Hansen, L.-K.; Gautun, O. R . Tetrahedron 2009, 65, 2806. |
[3] | (b) Chen, D.; Xu, M.-H . J. Org. Chem. 2014, 79, 7746. |
[4] | Uchino, M.; Sekiya, M . Chem. Pharm. Bull. 1980, 28, 126. |
[5] | (a) Billard, T.; Greiner, A.; Langlois, B. R . Tetrahedron 1999, 55, 7243. |
[5] | (b) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403. |
[5] | (c) Zhou, P.; Chen, B.-C.; Davis, F. A . Tetrahedron 2004, 60, 8003. |
[6] | Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A . J. Am. Chem. Soc. 1998, 120, 8011. |
[7] | Wang, Q.; Tang, X.-Y.; Shi, M. Angew. Chem. Int. Ed. 2016, 55, 10811. |
[8] | Yu, H.; Li, Z.; Bolm, C . Angew. Chem. Int. Ed. 2018, 57, 15602. |
[9] | Dai, Q.; Zhang, J . Adv. Synth. Catal. 2018, 360, 1123. |
[10] | Taniguchi, N . Eur. J. Org. Chem. 2016, 2016, 2157. |
[11] | Zhong, J.; Meng, Q.; Chen, B.; Tung, C.; Wu, L. Acta Chim. Sinica 2017, 75, 34 (in Chinese). |
[11] | ( 钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.) |
[12] | (a) Tang, S.; Liu, Y.; Li, L.; Ren, X.; Li, J.; Yang, G.; Li, H.; Yuan, B . Org. Biomol. Chem. 2019, 17, 1370. |
[12] | (b) Yan, Y.; Cui, C.; Li, Z. . Chin. J. Org. Chem. 2018, 38, 2501 (in Chinese). |
[12] | ( 闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501. ) |
[12] | (c) Yuan, Y.; Chen, Y.; Tang, S.; Huang, Z.; Lei, A . Sci. Adv. 2018, 4, eaat5312. |
[12] | (d) Wang, P.; Tang, S.; Huang, P.; Lei, A . Angew. Chem. Int. Ed. 2017, 56, 3009. |
[13] | (a) Wang, Y.; Qian, P.; Su, J.-H.; Li, Y.; Bi, M.; Zha, Z.; Wang, Z . Green Chem. 2017, 19, 4769. |
[13] | (b) Huang, P.; Wang, P.; Tang, S.; Fu, Z.; Lei, A. Angew. Chem. Int. Ed. 2018, 57, 8115; (c) Liu, K.; Song, C.; Lei, A . Org. Biomol. Chem. 2018, 16, 2375. |
[14] | Gao, X.; Yuan, G.; Chen, H.; Jiang, H.; Li, Y.; Qi, C . Electrochem. Commun. 2013, 34, 242. |
/
〈 |
|
〉 |