Preparation of Free-standing Micropatterned Keratin Films by Soft Lithography
Received date: 2019-02-11
Online published: 2019-04-29
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21771150, 21401154, U1405226), the 111 Project (No. B16029), the Natural Science Foundation of Guangdong Province (2014A030310005) and the Fundamental Research Funds for the Central Universities of China (No. 20720170011).
Recently, the use of micro-nano manufacturing processes to fabricate high-precision spatial patterns of proteins or peptides has provided important applications in cell biology, tissue engineering, pharmaceutical science, and optoelectronics. As a natural biological protein, wool keratin (WK) have excellent water solubility, good biocompatibility, and controllable degradability. However, WK usually cannot self-assemble to form a gel network or other insoluble forms. Therefore, it is difficult to prepare molded WK materials, such as a fiber, a film, and a gel. To solve this problem, this paper explores the feasibility of preparing photocrosslinkable WK. WK was extracted from wool fibres, and its side groups were reacted with the reagent 2-isocyanatoethyl methacrylate (IEM), yielding a photoactive WK precursor. And then, WK films with patterned microstructures were obtained by a covalent cross-linking method. This method can also be used to obtain other forms of WK materials. The as-prepared WK films were characterized by 3D laser scanning microscopy, UV-visible near-infrared spectroscopy and Fourier transform infrared microscopy. The experimental results showed that after two pattern shifts, the pattern on the WK film still maintained good integrity and conformed to the original pattern on the silicon wafer, which indicated that the pattern transfer method can achieve perfect reproduction of the pattern. In addition, we also demonstrated that the formation of structural colors caused by periodically arranged microstructures on WK films. Our experimental results not only provide a facile method to prepare WK films with surface microstructures by soft lithography but also give a new way for the preparation of molded WK. We expect the good optical properties and controlled degradation properties of WK open up new directions for the manufacture of biodegradable optics and implantable flexible microelectronic devices.
Zhu Shuihong , Luo Wenhao , Zeng Wenbin , Lin Youhui , Liu Xiang Yang . Preparation of Free-standing Micropatterned Keratin Films by Soft Lithography[J]. Acta Chimica Sinica, 2019 , 77(6) : 533 -538 . DOI: 10.6023/A19020060
[1] Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Biomaterials 1999, 20, 2363.
[2] Xia, Y. N.; Whitesides, G. M. Angew. Chem.-Int. Ed. 1998, 37, 550.
[3] Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Anal. Chem. 1998, 70, 4974.
[4] Boots, J. N. M.; Fokkink, R.; van der Gucht, J.; Kodger, T. E. Rev. Sci. Instrum. 2019, 90, 015108.
[5] Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. Nature 2016, 536, 451.
[6] Bhardwaj, N.; Kundu, S. C. Biotechnol. Adv. 2010, 28, 325.
[7] Tao, H.; Marelli, B.; Yang, M.; An, B.; Onses, M. S.; Rogers, J. A.; Kaplan, D. L.; Omenetto, F. G. 2015, 27, 4273.
[8] Kuang, M.; Wang, J.; Wang, L.; Song, Y. Acta Chim. Sinica 2012, 70, 1889. (邝旻旻, 王京霞, 王利彬, 宋延林, 化学学报, 2012, 70, 1889.)
[9] Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R.; Delamarche, E. Adv. Mater. 2000, 12, 1067.
[10] Nie, Z. H.; Kumacheva, E. Nat. Mater. 2008, 7, 277.
[11] Wang, Y.; Zhu, G.; Qi, W.; Li, Y.; Song, Y. Biosens. Bioelectron. 2016, 85, 777.
[12] Ye, C.; Kulkarni, D. D.; Dai, H.; Tsukruk, V. V. Adv. Funct. Mater. 2014, 24, 4364.
[13] Luo, W.; Zhu, S.; Lin, Y.; Liu, X. Y. Acta Chim. Sinica 2017, 75, 1010. (罗文昊, 朱水洪, 林友辉, 刘向阳, 化学学报, 2017, 75, 1010.)
[14] Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
[15] Lin, Z.-Y.; Xue, S.-F.; Chen, Z.-H.; Han, X.-Y.; Shi, G.; Zhang, M. Anal. Chem. 2018, 90, 8248.
[16] Filipponi, L.; Livingston, P.; Kaspar, O.; Tokarova, V.; Nicolau, D. V. Biomed. Microdevices 2016, 18, 9.
[17] Galeotti, F.; Andicsova, A.; Yunus, S.; Botta, C. Soft Matter 2012, 8, 4815.
[18] Fernandes, T. G.; Diogo, M. M.; Cabral, J. M. S. In Stem Cell Bioprocessing:For Cellular Therapy, Diagnostics and Drug Development, Vol. 5, Woodhead, Netherlands, 2013, p. 143.
[19] Rouse, J. G.; Van Dyke, M. E. Materials 2010, 3, 999.
[20] Tu, H.; Yu, R.; Lin, Z.; Zhang, L.; Lin, N.; Yu, W. D.; Liu, X. Y. Adv. Funct. Mater. 2016, 26, 9032.
[21] Pal, R. K.; Kurland, N. E.; Wang, C.; Kundu, S. C.; Yadavalli, V. K. ACS Appl. Mater. Inter. 2015, 7, 8809.
[22] Guglielmelli, A.; Nemati, S. H.; Vasdekis, A. E.; De Sio, L. J. Phy. D:Appl. Phys. 2019, 52, 053001.
[23] Yang, M. S.; Song, C.; Choi, J.; Jo, J. S.; Choi, J. H.; Moon, B. K.; Noh, H.; Jang, J. W. Nanoscale 2019, 11, 2326.
[24] Prum, R. O.; Torres, R. H.; Williamson, S.; Dyck, J. Nature 1998, 396, 28.
[25] Yin, J.; Duan, Y.; Shao, Z. Acta Chim. Sinica 2014, 72, 51. (尹建伟, 段郁, 邵正中, 化学学报, 2014, 72, 51.)
[26] Shavandi, A.; Silva, T. H.; Bekhit, A. A.; Bekhit, A. E. A. Bio-mater. Sci. 2017, 5, 1699.
[27] Kurland, N. E.; Dey, T.; Kundu, S. C.; Yadavalli, V. K. Adv. Mater. 2013, 25, 6207.
[28] Kurland, N. E.; Dey, T.; Wang, C.; Kundu, S. C.; Yadavalli, V. K. Adv. Mater. 2014, 26, 4431.
[29] Sun, Y.; Jallerat, Q.; Szymanski, J. M.; Feinberg, A. W. Nat. Methods 2015, 12, 134.
[30] Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.; Ingber, D. E. Annu. Rev. Biomed. Eng. 2001, 3, 335.
/
〈 |
|
〉 |