Article

Electrochemical Impedance Spectroscopic Studies of All Solid State battery with Li10GeP2S12 as Electrolyte

  • Zhang Tong ,
  • Yang Zi ,
  • Li Hongliang ,
  • Zhuang Quanchao ,
  • Cui Yanhua
Expand
  • a School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116;
    b Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900

Received date: 2019-01-05

  Online published: 2019-05-10

Supported by

Project supported by the National Natural Science Foundation of China (No. U1730136).

Abstract

All-solid-state batteries will be the main direction of lithium-ion batteries in the future. Current research mainly focuses on improving the conductivity of solid-state electrolytes, but there are few studies on the electronic and ionic transport in all solid state batteries. In this paper, we synthesized Li10GeP2S12 through high temperature solid phase method. The ionic conductivity of Li10GeP2S12 at room temperature is 2.02×10-3 S/cm and it's activation energy calculated from Arrhenius plots is 29.8 kJ/mol. The all solid-state battery of LiNbO3@LiNi1/3Co1/3Mn1/3O2/Li10GeP2S12/Li was successfully fabricated and characterized by galvanostatic charge/discharge (DC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The first discharge capacity of the all-solid-state battery is 121.2 mAh/g, the coulombic efficiency stabilize at 99.8% after 40 weeks and the capacity retention rate is 93.7% after 100 weeks. After analyzing the electrochemical impedance spectroscopy, the typical impedance spectra of the battery is composed of high frequency semicircle (HFS), middle frequency semicircle (MFS) and low frequency line (LFL). And HFS belongs to the impedance of electrolyte (Rel), MFS belongs to charge transfer impedance (Rct) and LFL belongs to diffusion process of lithium ion in active material. The continuous increase of Rel between 3.8 V and 4.3 V is due to the decomposition of LGPS to GeS2, S and P2S5 at high potential, which results in the decrease of grain conductivity. On the other hand, the voltage range of 3.8~4.3 V is near the charging and discharging plateau at which concentration polarization is large. The stress in the crystal may lead to the breakup of some grains which resulting in the generation of more grain boundaries and the increase of grain boundary impedance. According to the fitting results of Rct, we find that Rct decreases with the increase of potential until 4.3 V at which Rct reaches the minimum value in the first process of charging and it is a reversible process while discharging.

Cite this article

Zhang Tong , Yang Zi , Li Hongliang , Zhuang Quanchao , Cui Yanhua . Electrochemical Impedance Spectroscopic Studies of All Solid State battery with Li10GeP2S12 as Electrolyte[J]. Acta Chimica Sinica, 2019 , 77(6) : 525 -532 . DOI: 10.6023/A19010013

References

[1] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[2] Jin, Z. Q.; Xie, K.; Hong, X. B. Acta Chim. Sinica 2014, 72, 11(in Chinese). (金朝庆, 谢凯, 洪晓斌, 化学学报, 2014, 72, 11.)
[3] Liu, J.; Xu, J. Y.; Lin, Y.; Li, J.; Lai, Y. Q.; Yuan, C. F.; Zhang, J.; Zhu, K. Acta Chim. Sinica 2013, 71, 869(in Chinese). (刘晋, 徐俊毅, 林月, 李劼, 赖延清, 袁长福, 张锦, 朱凯, 化学学报, 2013, 71, 869.)
[4] Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. Chem. Rev. 2016, 47, 140.
[5] Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194.
[6] Qiu, Z.; Zhang, Y.; Xia, S.; Dong, P. Acta Chim. Sinica 2015, 73, 992(in Chinese). (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[7] Liu, W. Y.; Fu, Z. W.; Qin, Q. Z. Acta Chim. Sinica 2004, 62, 2223(in Chinese). (刘文元, 傅正文, 秦启宗, 化学学报, 2004, 62, 2223.)
[8] Deng, Z.; Mo, Y.; Ong, S. P. NPG Asia Mater. 2016, 8, e254.
[9] Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2, 16103.
[10] Ramakumar, S.; Deviannapoorani, C.; Dhivya, L.; Shankar, L. S.; Murugan, R. Prog. Mater. Sci. 2017, 88, 325.
[11] Xu, H. H.; Wang, S. F.; Wilson, H.; Zhao, F.; Manthiram, A. Chem. Mater. 2017, 29, 7206.
[12] Zhang, B.; Rui, T.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Zhan, L.; Feng, P. Energy Storage Mater. 2018, 10, 139.
[13] He, X.; Zhu, Y.; Mo, Y. Nat. Commun. 2017, 8, 15893.
[14] Fergus, J. W. J. Power Sources 2010, 195, 4554.
[15] Minami, T.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2006, 177, 2715.
[16] Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K. K.; Pastel, G.; Lin, C. F.; Mo, Y. Adv. Mater. 2017, 29, 1606042.
[17] Zhu, Y.; He, X.; Mo, Y. J. Mater. Chem. A 2016, 4, 3253.
[18] Wang, Q.; Wen, Z.; Jin, J.; Guo, J.; Huang, X.; Yang, J.; Chen, C. Chem. Commun (Camb). 2016, 52, 1637.
[19] Li, Y.; Zhou, W.; Chen, X.; Lü, X.; Cui, Z.; Xin, S.; Xue, L.; Jia, Q.; Goodenough, J. B. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13313.
[20] Kato, A.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2016, 309, 27.
[21] Zhu, Y.; He, X.; Mo, Y. ACS Appl. Mater. Interfaces 2015, 7, 23685.
[22] Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Chem. Mater. 2017, 29, 7961.
[23] Takada, K. Langmuir 2013, 29, 7538.
[24] Yokokawa, H. Solid State Ion. 2016, 285, 126.
[25] Long, P.; Xu, Q.; Peng, G.; Yao, X.; Xu, X. ChemElectroChem 2016, 3, 764.
[26] Wan, H.; Gang, P.; Yao, X.; Jing, Y.; Ping, C.; Xu, X. Energy Storage Mater. 2016, 4, 59.
[27] Nagao, M.; Kitaura, H.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2009, 189, 672.
[28] Gao, J.; Zhao, Y. S.; Shi, S. Q.; Li, H. Chinese Phys. B 2016, 25, 35.
[29] Haruyama, J.; Sodeyama, K.; Tateyama, Y. ACS Appl. Mater. Interfaces 2017, 9, 286.
[30] Tatsumisago, M.; Nagao, M.; Hayashi, A. J. Asian Ceram. Soc. 2013, 1, 17.
[31] Noriaki, K.; Kenji, H.; Yuichiro, Y.; Masaaki, H.; Ryoji, K.; Masao, Y.; Takashi, K.; Yuki, K.; Shigenori, H.; Koji, K. Nat. Mater. 2011, 10, 682.
[32] Amani, J. A.; Koppe, T.; Hofsäss, H.; Vetter, U. Phys. Rev. Appl. 2015, 4, 044007.
[33] Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y.; Cui, Y. L.; Fang, L.; Sun, S. G. Prog. Chem. 2010, 22, 1044(in Chinese). (庄全超, 徐守冬, 邱祥云, 崔永丽, 方亮, 孙世刚, 化学进展, 2010, 22, 1044.)
[34] Siroma, Z.; Sato, T.; Takeuchi, T.; Nagai, R.; Ota, A.; Ioroi, T. J. Power Sources 2016, 316, 215.
[35] Boulineau, S.; Courty, M.; Tarascon, J. M.; Viallet, V. Solid State Ion. 2012, 221, 1.
[36] Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C. Adv. Mater. 2015, 27, 3473.
[37] Qiu, X. Y.; Zhuan, Q. C.; Zhang, Q. Q.; Cao, R.; Qiang, Y. H.; Ying, P. Z.; Sun, S. G. J. Electroanal. Chem. 2013, 688, 392.
[38] Liu, W.; Sun, D.; Feng, T.; Xia, J.; Wang, Q.; Jiang, D. J. Ceram. 2013, 34, 555(in Chinese). (刘薇, 孙大志, 冯涛, 夏金峰, 王琪, 蒋丹宇, 陶瓷学报, 2013, 34, 555.)
[39] Verkerk, M.; Middelhuis, B.; Burggraaf, A. Solid State Ion. 1982, 6, 159.
[40] Näfe, H. Solid State Ion. 1984, 13, 255.
[41] Mo, Y.; Ong, S. P.; Ceder, G. Chem. Mater. 2012, 24, 15.
[42] Levi, M. D.; Gamolsky, K.; Aurbach, D.; Heider, U.; Oesten, R. Electrochim. Acta 2000, 45, 1781.
[43] Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L. Q.; Ma, R. Z.; Fukuda, K.; Osada, M.; Sasaki, T. Electrochem. Commun. 2007, 9, 1486.

Outlines

/