Article

Three-dimensional Porous Current Collector for Lithium Storage Enhancement of NiO Electrode

  • Wang Shan ,
  • Fan Xiaoyong ,
  • Cui Yu ,
  • Gou Lei ,
  • Wang Xingang ,
  • Li Donglin
Expand
  • School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China

Received date: 2019-02-03

  Online published: 2019-05-21

Supported by

Project supported by the National Natural Science Foundation of China (No. 21473014), the China Postdoctoral Science Foundation (No. 2016M590908) and the Special Fund for Basic Scientific Research of Central Colleges, Chang'an University, China (Grant No. 310831153505).

Abstract

Three-dimensional (3D) porous metals have been applied as current collector to improve the cycle stability and high-rate capacities of lithium-ion battery due to they can accommodate volumetric changes of electrodes during lithium storage, and provide rapid transfer channels for lithium ions. NiO has attracted more and more attention due to its high theoretical specific capacity as anode of lithium-ion battery. However its low electrical conductivity and large volumetric changes during electrochemical cycling result in poor cyclability and low high-rate capacity. Besides, the large first irreversible capacity causing from the low reaction activity between the first lithiation products Ni0 and Li2O, hinders its commercial application. In this work, we produce 3D porous Cu with interconnected pores (ca. 5 μm) by a facile and scalable electroless plating method and investigate its role on electrochemical storage improvement for NiO electrode. NiO@3D porous Cu is produced by electrodepositing Ni(OH)2 film coupled with sequential high temperature with 3D porous Cu as the substrate. The NiO film deposited on the 3D porous Cu has mesoporous structure. This unique architecture can provide rapid transfer channels for lithium-ion battery and free place for accommodating volumetric changes of NiO during electrochemical cycling, meanwhile increases reactive points for Ni0 and Li2O. Thus, this electrode demonstrates excellent high-rate capacity and high first columbic efficiency. The first discharge and charge capacities at 200 mA·g-1 are 1522.3 and 1230.2 mAh·g-1 respectively with high columbic efficiency of 80.8%. The same electrode shows high capacity of 578 mAh·g-1 at high current density of 20 A·g-1, which is 48.8% of that at 0.2 A·g-1. The electrochemical impedance spectra (EIS) demonstrate the NiO@3D porous Cu electrode has smaller charge transfer resistance and large Li-ion diffusion efficiency compared with NiO@Cu foil. The SEM images show that the NiO@3D porous Cu electrode suffered 100 cycles remains well 3D porous structure. A full cell is assembled using NiO@3D porous Cu as negative electrode and LiNi1/3Co1/3Mn1/3O2 as positive electrode. The full cell delivers first charge and discharge capacities of 1514 and 1060 mAh·g-1 respectively at 0.2 A·g-1 (based on NiO) with a coulomb efficiency of 70%, a first discharge capacity of 873 mAh·g-1 at 1.0 A·g-1 with 709 mAh·g-1 remained after 100 cycles (the retention is 81%). This work may offer an effective method for lithium storage enhancement of transition metal oxides.

Cite this article

Wang Shan , Fan Xiaoyong , Cui Yu , Gou Lei , Wang Xingang , Li Donglin . Three-dimensional Porous Current Collector for Lithium Storage Enhancement of NiO Electrode[J]. Acta Chimica Sinica, 2019 , 77(6) : 551 -558 . DOI: 10.6023/A19020057

References

[1] Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Adv. Mater. 2008, 20, 2878.
[2] Xia, L.; Yu, L.-P.; Hu, D.; Chen, Z. Acta Chim. Sinica 2017, 75, 173. (夏兰, 余林颇, 胡笛, 陈政, 化学学报, 2017, 75, 173.)
[3] Liang, C.; Gao, M.-X; Pan, H.; Liu, Y.; Yan, M. J. Alloys Compd. 2013, 575, 246.
[4] Yu, P.; Liu, X.; Wang, L.; Tian, C.-G.; Yu, H.-T.; Fu, H. ACS Sustainable Chem. Eng. 2017, 5, 11238.
[5] Chang, S.-L.; Liang, F.; Yao, Y.-C.; Ma, W.-H.; Yang, B.; Dai, Y.-N. Acta Chim. Sinica 2018, 76, 515. (常世磊, 梁风, 姚耀春, 马文会, 杨斌, 戴永年, 化学学报, 2018, 76, 515.)
[6] Zhao, T. P.; Gao, D. S.; Lei, G. T.; Li, Z. H. Acta Chim. Sinica 2009, 67, 1957. (赵铁鹏, 高德淑, 雷钢铁, 李朝晖, 化学学报, 2009, 67, 1957.)
[7] Wang, X.; Qiao, L.; Sun, X.; Li, X.; Hu, D.; Zhang, Q.; He, D.-Y. J. Mater. Chem. A 2013, 1, 4173.
[8] Wen, W.; Wu, J.-M.; Cao, M.-H. Nano Energy 2013, 2, 1383.
[9] Wen, W.; Wu, J.-M.; Cao, M.-H. J. Mater. Chem. A 2013, 1, 3881.
[10] Kang, C.; Cha, E.; Lee, S. H.; Choi, W. RSC Adv. 2018, 8, 7414.
[11] Oh, S. H.; Park, J.-S.; Jo, M. S.; Kang, Y. C.; Cho, J. S. Chem. Eng. J. 2018, 347, 889.
[12] Zhang, Y.-H.; Wang, Z.-Y.; Shi, C.-S.; Liu, E.-Z.; He, C.-N.; Zhao, N.-J. Acta Phys.-Chim. Sin. 2015, 31, 268. (张远航, 王志远, 师春生, 刘恩佐, 何春年, 赵乃勤, 物理化学学报, 2015, 31, 268.)
[13] Sun, X.; Yan, C.-L; Chen, Y.; Si, W.; Deng, J.; Oswald, S.; Liu, L.; Schmidt, O. G. Adv. Eng. Mater. 2014, 4, 1300912.
[14] Lv, P.; Zhao, H.-L; Zeng, Z.; Gao, C.; Liu, X.; Zhang, T. Appl. Surf. Sci. 2015, 329, 301.
[15] Ma, J.; Yin, L.-W.; Ge, T. CrystEngComm 2015, 17, 9336.
[16] Yu, P.; Wang, L.; Sun, F.; Zhao, D.; Tian, C.; Zhao, L.; Liu, X.; Wang, J.-Q.; Fu, H.-G. Chem. Eur. J. 2015, 21, 3249.
[17] Vlad, A.; Antohe, V.-A.; Martinez-Huerta, J. M.; Ferain, E.; Gohy, J.-F.; Piraux, L. J. Mater. Chem A 2016, 4, 1603.
[18] Park, G.-D.; Hong, J.-H.; Park, S. K.; Kang, Y. C. Appl. Surf. Sci. 2019, 464, 597.
[19] Fan, Z.; Liang, J.; Yu, W.; Ding, S.-J.; Cheng, S.; Yang, G.; Wang, Y.; Xi, Y.; Xi, K.; Kumar, R. V. Nano Energy 2015, 16, 152.
[20] Liang, J.; Hu, H.; Park, H.; Xiao, C.; Ding, S.-J.; Paik, U.; Lou, X. W. Eng. Environ. Sci. 2015, 8, 1707.
[21] Park, S. K.; Choi, J. H.; Kang, Y. C. Chem. Eng. J. 2018, 354, 327.
[22] Zou, F.; Chen, Y. M.; Liu, K.; Yu, Z.; Liang, W.; Bhaway, S. M.; Gao, M.; Zhu, Y. ACS Nano 2016, 10, 377.
[23] Hien, V.-X.; Vuong, D. D.; Chien, N. D.; Heo, Y.-W. Mater. Chem. Phys. 2018, 217, 74.
[24] Jiang, J.; Ma, C.; Yang, Y.; Ding, J.; Ji, H.; Shi, S.; Yang, G. Appl. Surf. Sci. 2018, 441, 232.
[25] Long, H.; Shi, T.; Hu, H.; Jiang, S.; Xi, S.; Tang, Z.-R. Sci. Rep. 2014, 4, 7413.
[26] Meng, X.; Deng, D. Chem. Eng. Sci. 2019, 194, 134.
[27] Xia, Y.; Sun, B.; Zhu, S.; Mao, S.; Li, X.; Guo, B.; Zeng, Y.; Wang, H.; Zhao, Y. J. Solid State Chem. 2019, 269, 132.
[28] Hu, N.; Tang, Z.; Shen, P. K. RSC. Adv. 2018, 8, 26589.
[29] Fan, X.-Y.; Han, J.-X; Jiang, Y.; Ni, J.; Gou, L.; Li, D.-L.; Li, L. ACS Appl. Energy Mater. 2018, 1, 3598.
[30] Fan, X.-Y; Shi, Y.; Gou, L.; Li, D. Electrochim. Acta 2014, 142, 268.
[31] Sun, C.; Yang, J.; Rui, X.; Zhang, W.; Yan, Q.; Chen, P.; Huo, F.; Huang, W.; Dong, X. C. J. Mater. Chem. A 2015, 3, 8483.
[32] Feng, Y.; Zhang, H.; Li, W.; Fang, L.; Wang, Y. J. Power Sources 2016, 301, 78.
[33] Yang, W.; Cheng, G.; Dong, C.; Bai, Q.; Chen, X.; Peng, Z.; Zhang, Z.-H. J. Mater. Chem. A 2014, 2, 20022.
[34] Ni, S.; Lv, X.; Ma, J.; Yang, X.-L.; Zhang, L. J. Power Sources 2014, 270, 564.
[35] Hu, Y.; Wei, J.; Liang, Y.; Zhang, H.; Zhang, X.; Shen, W.; Wang, H.-T. Angew. Chem. Int. Ed. 2016, 55, 2048.
[36] Wu, J.; Yin, W. J.; Liu, W.-W.; Guo, P.; Liu, G.; Liu, X.; Geng, D.; Lau, W.-M.; Liu, H.; Liu, L. M. J. Mater. Chem. A 2016, 4, 10940.
[37] Kvasha, A.; Azaceta, E.; Leonet, O.; Bengoechea, M.; Boyano, I.; Tena-Zaera, R.; Meatza, I. d.; Miguel, O.; Grande, H.-J.; Blazquez, J. A. Electrochim. Acta 2015, 180, 16.
[38] Yan, X.-Y.; Tong, X.; Wang, J.; Gong, C.; Zhang, M.; Liang, L. J. Alloys Compd. 2013, 556, 561.
[39] Fan, X.-Y.; Zhuang, Q.-C.; Wei, G.-Z.; Ke, F.-S.; Huang, L.; Dong, Q.-F.; Sun, S.-G. Acta Chim. Sinica 2009, 67, 1547. (樊小勇, 庄全超, 魏国祯, 柯福生, 黄令, 董全峰, 孙世刚, 化学学报, 2009, 67, 1547.)
[40] Fan, X.-Y.; Shi, Y.-X.; Cui, Y.; Li, D.-L.; Gou, L. Ionics 2015, 21, 1909.

Outlines

/