Perspectives

Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion

  • Peng Zhengkang ,
  • Ding Huimin ,
  • Chen Rufan ,
  • Gao Chao ,
  • Wang Cheng
Expand
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072

Received date: 2019-04-07

  Online published: 2019-05-21

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572170).

Abstract

Covalent organic frameworks (COFs) are a class of porous crystalline materials consisting of organic units connected through covalent bonds. Due to their low density, high surface area and high thermal stability, COFs have found interesting applications in many fields, including molecular adsorption and separation, sensing, catalysis and optoelectronics devices. In particular, two-dimensional (2D) COFs have attracted increasing attention in energy fields. In this perspective, the applications of 2D COFs in energy storage (lithium ion batteries, lithium-sulfur batteries, supercapacitor and fuel cells) and energy conversion (water splitting and reduction of carbon dioxide) are reviewed. In addition, we will also discuss the remaining challenging issues.

Cite this article

Peng Zhengkang , Ding Huimin , Chen Rufan , Gao Chao , Wang Cheng . Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion[J]. Acta Chimica Sinica, 2019 , 77(8) : 681 -689 . DOI: 10.6023/A19040118

References

[1] (a) Das, S.; Heasman, P.; Ben, T.; Qiu, S. Chem. Rev, 2017, 117, 1515.
(b) Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068.
(c) Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053.
(d) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[2] (a) Zhou, B.; Chen, L. Acta Chim. Sinica 2015, 73, 487. (周宝龙, 陈龙, 化学学报, 2015, 73, 487.)
(b) Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
(c) Cooper, A. I. Adv. Mater. 2009, 21, 1291.
[3] (a) Ren, H.; Zhu, G. Acta Chim. Sinica 2015, 73, 587. (任浩, 朱广山, 化学学报, 2015, 73, 587.)
(b) Ben, T.; Qiu, S. CrystEngComm 2013, 15, 17.
(c) Ben, T.; Pei, C.; Zhang, D.; Xu, J.; Deng, F.; Jing, X.; Qiu, S. Energy Environ. Sci. 2011, 4, 3991.
(d) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem. Int. Ed. 2009, 48, 9457.
[4] (a) Tan, L.; Tan, B. Acta Chim. Sinica 2015, 73, 530. (谭良骁, 谭必恩, 化学学报, 2015, 73, 530.)
(b) Huang, J.; Turner, S. R. Polym. Rev. 2017, 58, 1.
(c) Tan, L.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.
[5] Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[6] (a) Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855.
(b) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277.
(c) Song, J. R.; Sun, J.; Liu, J.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2014, 50, 788.
(d) Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. J. Am. Chem. Soc. 2014, 136, 15885.
[7] (a) Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.
(b) Wang, P.; Zhou, F.; Zhang, C.; Yin, S. Y.; Teng, L.; Chen, L.; Hu, X. X.; Liu, H. W.; Yin, X.; Zhang, X. B. Chem. Sci. 2018, 9, 8402.
(c) Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. J. Am. Chem. Soc. 2016, 138, 5797.
(d) Lin, G.; Ding, H.; Yuan, D.; Wang, B.; Wang, C. J. Am. Chem. Soc. 2016, 138, 3302.
(e) Zhu, M. W.; Xu, S. Q.; Wang, X. Z.; Chen, Y.; Dai, L.; Zhao, X. Chem. Commun. 2018, 54, 2308.
(f) Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339. (杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[8] (a) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
(b) Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. Angew. Chem. Int. Ed. 2014, 53, 2878.
(c) Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 17082.
(d) Zhang, J.; Han, X.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8277.
(e) Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. J. Am. Chem. Soc. 2018, 140, 4623.
(f) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.
[9] (a) Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672.
(b) Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234.
(c) Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. Angew. Chem. Int. Ed. 2012, 51, 2618.
(d) Sun, B.; Zhu, C.-H.; Liu, Y.; Wang, C.; Wan, L.-J.; Wang, D. Chem. Mater. 2017, 29, 4367.
(e) Medina, D. D.; Sick, T.; Bein, T. Adv. Energy Mater. 2017, 7, 1700387.
[10] (a) Ma, L.; Wang, S.; Feng, X.; Wang, B. Chin. Chem. Lett. 2016, 27, 1383.
(b) Alahakoon, S. B.; Thompson, C. M.; Occhialini, G.; Smaldone, R. A. ChemSusChem 2017, 10, 2116.
(c) Mandal, A. K.; Mahmood, J.; Baek, J.-B. ChemNanoMat 2017, 3, 373.
(d) Medina, D. D.; Sick, T; Bein, T. Adv. Energy Mater. 2017, 7, 1700387.
(e) Zhan, X.; Chen, Z.; Zhang, Q. J. Mater. Chem. A 2017, 5, 14463.
(f) Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. ACS Energy Lett. 2018, 3, 400.
(g) Lin, C. Y.; Zhang, D.; Zhao, Z.; Xia, Z. Adv. Mater. 2018, 30, 1703646.
(h) Cao, S.; Li, B.; Zhu, R.; Pang, H. Chem. Eng. J. 2019, 355, 602.
(i) Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta. Chim. Sinica 2015, 73, 557. (万钢, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73, 557.)
[11] (a) Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y.; Jiang, D. Adv. Mater. 2012, 24, 3026.
(b) Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 546.
(c) Colson, J. W.; Dichtel, W. R. Nat. Chem. 2013, 5, 453.
(d) Yang, L.; Wei, D.-C. Chin. Chem. Lett. 2016, 27, 1395.
[12] (a) Lohse, M. S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; De Vos, D.; Medina, D. D.; Bein, T. Chem. Mater. 2016, 28, 626.
(b) Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 15519.
(c) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. Polym. Chem. 2016, 7, 4176.
(d) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673.
(e) Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Nat. Commun. 2018, 9, 2998.
(f) Han, X.; Huang, J.; Yuan, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 892.
(g) Zhang, B.; Wei, M.; Mao, H.; Pei, X.; Alshmimri, S. A.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 12715.
[13] Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2016, 16, 16.
[14] (a) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480.
(b) Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127.
(c) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Schalkwijk, W. Nat. Mater. 2005, 4, 366.
[15] Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Nat. Commun. 2013, 4, 1687.
[16] (a) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.
(b) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691.
(c) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[17] (a) Liang, Y.; Tao, Z.; Chen, J. Adv. Energy Mater. 2012, 2, 742.
(b) Song, Z.; Zhou, H. Energy Environ. Sci. 2013, 6, 2280.
(c) Nishida, S.; Yamamoto, Y.; Takui, T.; Morita, Y. ChemSusChem 2013, 6, 794.
(d) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120.
(e) Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652.
(f) He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. Acta Chim. Sinica 2018, 76, 202. (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
[18] (a) Mike, J. F.; Lutkenhaus, J. L. ACS Macro Lett. 2013, 2, 839.
(b) Yang, Y.; Wang, C.; Yue, B.; Gambhir, S.; Too, C. O.; Wallace, G. G. Adv. Energy Mater. 2012, 2, 266.
[19] (a) Wu, H.; Shevlin, S. A.; Meng, Q.; Guo, W.; Meng, Y.; Lu, K.; Wei, Z.; Guo, Z. Adv. Mater. 2014, 26, 3338.
(b) Song, Z.; Qian, Y.; Liu, X.; Zhang, T.; Zhu, Y.; Yu, H.; Otani, M.; Zhou, H. Energy Environ. Sci. 2014, 7, 4077.
(c) Song, Z.; Zhan, H.; Zhou, Y. Angew. Chem. Int. Ed. 2010, 49, 8444.
(d) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120.
(e) Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984.
[20] (a) Zhan, L.; Song, Z.; Zhang, J.; Tang, J.; Zhan, H.; Zhou, Y.; Zhan, C. Electrochim. Acta 2008, 53, 8319.
(b) Zhang, J. Y.; Kong, L. B.; Zhan, L. Z.; Tang, J.; Zhan, H.; Zhou, Y. H.; Zhan, C. M. J. Power Sources 2007, 168, 278.
[21] (a) Jähnert, T.; Hager, M. D.; Schubert, U. S. J. Mater. Chem. A 2014, 2, 15234.
(b) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397.
(c) Nakahara, K.; Oyaizu, K.; Nishide, H. Chem. Lett. 2011, 40, 222.
(d) Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; Takui, T. Nat. Mater. 2011, 10, 947.
[22] Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. J. Mater. Chem. A 2016, 4, 18621
[23] Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.
[24] Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.
[25] Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Nat. Commun. 2018, 9, 576.
[26] (a) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Chem. Rev. 2016, 116, 140.
(b) Thangadurai, V.; Narayanan, S.; Pinzaru, D. Chem. Soc. Rev. 2014, 43, 4714.
[27] (a) Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mater. 2015, 28, 266.
(b) Xin, S.; You, Y.; Wang, S.; Gao, H.-C.; Yin, Y.-X.; Guo, Y.-G. ACS Energy Lett. 2017, 2, 1385.
(c) Jeong, K.; Park, S.; Lee, S.-Y. J. Mater. Chem. A 2019, 7, 1917.
[28] (a) Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem. Soc. Rev. 2017, 46, 797.
(b) Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Nat. Mater. 2013, 12, 452.
[29] Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S. H.; Zhang, W. Angew. Chem. Int. Ed. 2016, 55, 1737.
[30] Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; Chen, L. J. Am. Chem. Soc. 2018, 140, 896.
[31] Guo, Z.; Zhang, Y.; Dong, Y.; Li, J.; Li, S.; Shao, P.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2019, 141, 1923.
[32] Xu, Q.; Tao, S.; Jiang, Q.; Jiang, D. J. Am. Chem. Soc. 2018, 140, 7429.
[33] Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc. 2019, 141, 1227.
[34] (a) Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Adv. Mater. 2017, 29, 1601759.
(b) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19.
(c) Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L.F. Nat. Energy 2016, 1, 16132.
[35] (a) Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186.
(b) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500.
(c) Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Adv. Mater. 2014, 27, 1694.
(d) Cheng, Z.; Pan, H.; Zhong, H.; Xiao, Z.; Li, X.; Wang, R. Adv. Funct. Mater. 2018, 28, 1707597.
[36] (a) Song, J.; Gordin, M. L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D. Angew. Chem. Int. Ed. 2015, 54, 4325.
(b) Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2014, 6, 8789.
[37] Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854.
[38] Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2016, 4, 7416.
[39] Meng, Y.; Lin, G.; Ding, H.; Liao, H.; Wang, C. J. Mater. Chem. A 2018, 6, 17186.
[40] Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H. ACS Appl. Mater. Interfaces 2017, 9, 37731.
[41] (a) Mclntosh, S.; Gorte, R. J. Chem. Rev. 2004, 104, 4845.
(b) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.
[42] (a) Schmidt-Rohr, K.; Chen, Q. Nat. Mater. 2008, 7, 75.
(b) Mauritz, K. A. Chem. Rev. 2004, 104, 4535.
(c) Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637.
[43] (a) Devanathan, R. Energy Environ. Sci. 2008, 1, 101.
(b) Peckham, T. J.; Holdcroft, S. Adv. Mater. 2010, 22, 4667.
[44] (a) Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463.
(b) Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289.
[45] (a) Horike, S.; Umeyama, D.; Kitagawa, S. Acc. Chem. Res. 2013, 46, 2376.
(b) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. Nat. Chem. 2009, 1, 705.
(c) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[46] Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. J. Am. Chem. Soc. 2014, 136, 6570.
[47] Xu, H.; Tao, S.; Jiang, D. Nat. Chem. 2016, 15, 722.
[48] Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Chem. Mater. 2016, 28, 1489.
[49] Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Angew. Chem. Int. Ed. 2018, 57, 108.
[50] Chen, X.; Paul, R.; Dai, L. Natl. Sci. Rev. 2017, 4, 453.
[51] Li, X.; Wei, B. Nano Energy 2013, 2, 159.
[52] Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925.
[53] DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruna, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821
[54] DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Rodriguez-Calero, G. G.; Bisbey, R. P.; Abruña, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.
[55] Mulzer, C. R.; Shen, L; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. ACS Cent. Sci. 2016, 2, 667.
[56] Xu, F.; Xu, H.; Chen, X.; Wu, D.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.; Jiang, D. Angew. Chem. Int. Ed. 2015, 54, 6814.
[57] Chandra, S.; Roy Chowdhury, D.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Chem. Mater. 2017, 29, 2074.
[58] Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.
[59] Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.
[60] Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[61] (a) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
(b) Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050.
[62] (a) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.
(b) Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. J. Am. Chem. Soc. 2014, 136, 1730.
[63] (a) Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265.
(b) Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7681.
(c) Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 9202.
[64] (a) Woods, D. J.; Sprick, R. S.; Smith, C. L.; Cowan, A. J.; Cooper, A. I. Adv. Energy Mater. 2017, 7, 1700479.
(b) Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2016, 55, 1792.
[65] Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789.
[66] Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 8508.
[67] Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomacker, R.; Thomas, A.; Schmidt, J. J. Am. Chem. Soc. 2018, 140, 1423.
[68] Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.
[69] Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501.
[70] (a) Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2, 1765.
(b) Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53, 10960.
[71] (a) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874.
(b) Zhang, C.; Antonietti, M.; Fellinger, T.-P. Adv. Funct. Mater. 2014, 24, 7655.
(c) Wu, L.; Li, Q.; Wu, C. H.; Zhu, H.; Mendoza-Garcia, A.; Shen, B.; Guo, J.; Sun, S. J. Am. Chem. Soc. 2015, 137, 7071.
(d) Zhang, G.; Huang, C.; Wang, X. Small, 2015, 11, 1215.
[72] Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Chem. Rev. 2015, 115, 12974.
[73] Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Chem. Mater. 2016, 28, 4375.
[74] Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1600110.
[75] Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1601189.
[76] (a) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.
(b) Gray, H. B. Nat. Chem. 2009, 1, 7.
[77] (a) Zhao, G.; Huang, X.; Wang, X.; Wang, X. J. Mater. Chem. A 2017, 5, 21625.
(b) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372.
(c) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637.
(d) Thampi, K. R.; Kiwi, J.; Grätzel, M. Nature 1987, 327, 506.
(e) Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607.
[78] (a) Lin, W.; Frei, H. J. Am. Chem. Soc. 2005, 127, 1610.
(b) Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505.
(c) Shioya, Y.; Ikeue, K.; Ogawa, M.; Anpo, M. Appl. Catal. A:General 2003, 254, 251.
(d) Matsuoka, M.; Anpo, M. J. Photochem. Photobiol. C:Photochem. Rev. 2003, 3, 225.
(e) Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Catal. Today 1998, 44, 327.
(f) Anpo, M. J. CO2 Util. 2013, 1, 8.
(g) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919.
[79] Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2018, 140, 14614.
[80] Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.
[81] Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.; Zhao, Y.; Chang, C. J.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 1116.

Outlines

/