Communication

Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols

  • Man Hai, ,
  • Li-Na Guo, ,
  • Le Wang, ,
  • Xin-Hua Duan,
Expand
  • aDepartment of Chemistry, School of Science, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049
    bShaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013

Received date: 2019-04-30

  Online published: 2019-05-21

Supported by

Project supported by the Natural Science Foundation in Shaanxi Province(No. 2019JM-299)

Abstract

Substituted quinoxalin-2(1H)-ones represent an important class of fused heterocyclic compounds which are existing in numerous bioactive natural products, pharmaceuticals, and functional materials. As a result, there are many methods for the synthesis of this heterocyclic compounds over the past several years. In this context, the direct C—H functionalization of quinoxalin-2(1H)-ones have proved to be an effective protocol to diverse heterocycles, such as radical C(3)—H arylation, phosphonation, amination, and acylation of quinoxalin-2(1H)-ones. However, the direct C—H alkylation of quinoxalin-2(1H)-ones is still rare. Because of their importance, it is desirable to introduce alkyl substituents, especially those bearing functional groups, at the 3-position of quinoxalin-2(1H)-ones, which would probably promote their applications in new drug discovery and development. Thus, this article reports a visible light promoted C(3)-ketoalkylation of quinoxaline-2(1H)-ones via oxidative ring-opening of cycloalkanols. At room temperature, the reaction is carried out by using cycloalkanols as the ketoalkylating agent and potassium persulfate as oxidizing agent in a solution of methanol and water (VV=1∶2) for 16 h upon visible light irradiation. A variety of keto-functionalized alkyl moieties with different chain length have been successfully incorporated into the C(3)-position of quinoxalin-2(1H)-ones. Thus, the procedure provides a greener, environmentally friendly and simple method for the synthesis of quinoxalin-2(1H)-one derivatives. A representative procedure for this reaction is given as follows. An oven-dried quartz reaction tube (10 mL) equipped with a magnetic stir bar was charged with K2S2O8 (2.0 equiv., 0.4 mmol), quinoxalin-2(1H)-one 1 (1.0 equiv., 0.2 mmol) and cycloalkanol 2 (1.5 equiv., 0.3 mmol). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of 1.3 mL of H2O and 0.7 mL of MeOH were added under nitrogen. Then the reaction tube was sealed and was irradiated under blue light at room temperature for 16 h. After completion of the reaction, ethyl acetate was added to the reaction mixture, and washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate, VV=4∶1) affords the corresponding product.

Cite this article

Man Hai, , Li-Na Guo, , Le Wang, , Xin-Hua Duan, . Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols[J]. Acta Chimica Sinica, 2019 , 77(9) : 895 -900 . DOI: 10.6023/A19040155

References

[1] Ries, U. J.; Priepke, H. W. M.; Hauel, N. H.; Handschuh, S.; Mihm, G.; Stassen, J. M.; Wienen, W.; Nar, H . Bioorg. Med. Chem. Lett. 2003, 13, 2297.
[2] (a) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G . Mini-Rev. Med. Chem. 2006, 6, 1179.
[2] (b) Li, X.; Yang, K.-H.; Li, W.-L.; Xu, W.-F . Drugs Future 2006, 31, 979.
[2] (c) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.-Z.; Wang, W.; Qin, X.-Y.; Yang, Y.-C.; Chen, X.; Zhu, S.-J.; Zhu, C.-J.; Ma, B . Eur. J. Med. Chem. 2014, 80, 383.
[3] Buratti, W.; Gardini, G. P.; Minisci, F . Tetrahedron 1971, 27, 3655.
[4] For review, see: (a) Proctor, R. S. J.; Phipps, R. J . Angew. Chem., Int. Ed. 2019, DOI: 10.1002/anie.201900977.
[4] (b) Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W . J. Org. Chem. 2016, 81, 6980.
[4] (c) Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C . Nat. Commun. 2018, 57, 1640.
[5] (a) Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610.
[5] (b) Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162.
[5] (c) Zhou, Z.; Ma, Z.; Behnke, N. E.; Gao, H.; Kurti, L . J. Am. Chem. Soc. 2017, 139, 115.
[5] (d) Wang, P.; Li, G. C.; Jain, P.; Farmer, M. E.; He, J.; Shen, P. X.; Yu, J. Q . J. Am. Chem. Soc. 2016, 138, 14092.
[6] (a) Yin, K.; Zhang, R. Org. Lett. 2017, 19, 1530.
[6] (b) Paul, S.; Ha, J. H.; Park, G. E.; Lee, Y. R . Adv. Synth. Catal. 2017, 359, 1515.
[6] (c) Carr?r, A.; Brion, J.-D.; Messaoudi, S.; Alami, M . Org. Lett. 2013, 38, 3189.
[6] (d) Wang, L.-L.; Bao, P.-L.; Liu, W.-W.; Liu, S.-T.; Hu, C.-S.; Yue, H.-L.; Yang, D.-S.; Wei, W . Chin. J. Org. Chem. 2018, 38, 3189.
[6] ( 王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, , 有机化学, 2018, 38, 3189.)
[7] Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X . Org. Biomol. Chem. 2016, 52, 2846.
[8] Li, Y.; Gao, M.; Wang, L.; Cui, X . Org. Biomol. Chem. 2016, 14, 8428.
[9] (a) Yuan, J.-W.; Fu, J.-H.; Liu, S.-N.; Xiao, Y.-M.; Mao, P.; Qu, L.-B . Org. Biomol. Chem. 2018, 16, 3203.
[9] (b) Xie, L.-Y.; Peng, S.; Fan, T.-G.; Liu, Y.-F.; Sun, M.; Jiang, L.-L.; Wang, X.-X.; Cao, Z.; He, W.-M . Sci. China, Chem. 2019, 62, 460.
[10] Hong, G.-F.; Yuan, J.-W.; Fu, J.-H.; Pan, G.-Y.; Wang, Z.-W.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Zhang, X.-M . Org. Chem. Front. 2019, 6, 1173.
[11] (a) Yuan, J.-W.; Fu, J.-H.; Yin, J.-H.; Dong, Z.-H.; Xiao, Y.-M.; Mao, P.; Qu, L.-B . Org. Chem. Front. 2018, 5, 2820.
[11] (b) Fu, J.-H.; Yuan, J.-W.; Zhang, Y.; Xiao, Y.-M.; Mao, P.; Diao, X.-Q.; Qu, L.-B . Org. Chem. Front. 2018, 5, 3382.
[12] Yang, L.; Gao, P.; Duan, X.-H.; Gu, Y.-R.; Guo, L.-N. Org. Lett. 2018, 20, 1034.
[13] Gu, Y.-R.; Duan, X.-H.; Chen, L.; Ma, Z.-Y.; Gao, P.; Guo, L.-N. Org. Lett. 2019, 21, 917.
[14] (a) Liu, R.; Huang, Z.-H.; Murray, M. G.; Guo, X.-Y.; Liu, G . J. Med. Chem. 2011, 54, 5747.
[14] (b) Qin, X.-Y.; Hao, X.; Han, H.; Zhu, S.-J.; Yang, Y.-C.; Wu, B.-B.; Hussain, S.; Parveen, S.; Jing, C.-J.; Ma, B.; Zhu, C.-J . J. Med. Chem. 2015, 58, 1254.
[15] For review, see: (a) Wu, X.-X.; Zhu, C. Chem. Select. 2017, 2, 10678.
[15] For selected examples, see:(b) Ren, R.-G.; Zhao, H.-J.; Huan, L.-T.; Zhu, C . Angew. Chem., Int. Ed. 2015, 54, 12692.
[15] (c) Zhao, H.-J.; Fan, X.-F.; Yu, J.-J.; Zhu, C . J. Am. Chem. Soc. 2015, 137, 3490.
[15] (d) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H . Org. Lett. 2015, 17, 4798.
[15] (e) Jia, K.; Zhang, F.; Huang, H.; Chen, Y . J. Am. Chem. Soc. 2016, 138, 1514.
[15] (f) Huan, L.-T.; Zhu, C . Org. Chem. Front. 2016, 3, 1467.
[15] (g) Guo, L.-N.; Deng, Z.-Q.; Wu, Y.; Hu, J . RSC Adv. 2016, 6, 27000.
[15] (h) Ren, R.-G.; Wu, Z.; Xu, Y.; Zhu, C . Angew. Chem., Int. Ed. 2016, 55, 2866.
[15] (i) Nikolaev, A.; Legault, C. Y.; Zhang, M.-H.; Orellana, A . Org. Lett. 2018, 20, 796.
[15] (j) Zhao, R.; Yao, Y.; Zhu, D.; Chang, D.-H.; Liu, Y.; Shi, L . Org. Lett. 2018, 20, 1228.
[16] For selected reviews see: (a) Zhao, J.-F.; Duan, X.-H.; Guo, L.-N . Chin. J. Org. Chem. 2017, 37, 2498.
[16] ( 赵景峰, 段新华, 郭丽娜 . 有机化学. 2017, 37, 2498.)
[16] (b) Mandal, S.; Bera, T.; Dubey, G.; Saha, J.; Laha, J. K . ACS Catal. 2018, 8, 5085.
[16] (c) Sathyamoorthi, S.; Banerjee, S . Chem. Select. 2017, 2, 10678.
[17] For selected examples see: (a) Minisci, F.; Citterio, A.; Giordano, C . Acc. Chem. Res. 1983, 16, 27.
[17] (b) Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667.
[17] (c) Yin, F.; Wang, X.-S . Org. Lett. 2014, 16, 1128.
[17] (d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H . Green Chem. 2014, 16, 2988.
[17] (e) Li, Y.-M.; Shen, Y.-H.; Chang, K.-J.; Yang, S.-D . Tetrahedron. 2014, 70, 1991.
[17] (f) Laha, J. K.; Patel, K. V.; Tummalapalli, K. S. S.; Dayal, N . Chem. Commun. 2016, 52, 10245.
[18] (a) Devan, S.; Shah, B.-A. Chem. Commun. 2016, 52, 1490.
[18] (b) Zhang, Y.-Q.; Teuscher, K. B.; Ji, H.-T. Chem. Sci. 2016, 7, 2111.
[18] (c) Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J . Org. Lett. 2016, 18, 3326.
[18] (d) Meyer, A. U.; Alexander, W.; K?nig, B . Angew. Chem., Int. Ed. 2017, 56, 409.
Outlines

/