Recent Progress in Homogeneous Catalytic Hydrogenation of Esters
Received date: 2019-05-12
Online published: 2019-06-20
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21532003, 21790332, 21871152), and the "111" Project of the Ministry of Education of China (No. B06005).
The reduction of esters to alcohols is one of the most important chemical transformations in the production of fine chemicals, such as pharmaceuticals, agricultural chemicals, fragrances, and biofuels. Homogeneous catalytic hydrogenation of esters represents a green, atom-economic, and sustainable alternative to conventional stoichiometric approaches, avoiding the generation of large amount of wastes and the difficulties arose in work-up procedure by using metal hydride reductants. Although challenges still exist, significant progress has been made in catalytic hydrogenation of esters over the last ten years. Numerous transition metal catalysts including noble metal (such as ruthenium, osmium, and iridium) complexes and base metal catalysts (such as iron, cobalt, and manganese) have been developed for the hydrogenation of esters. The ligands of the catalysts have been well studied. A wide range of bidentate ligands including diamines, amino-phosphines, pyridine-amines, N-heterocyclic carbene-amines, and bipyridines, tridentate pincer ligands containing diethylamine and pyridine skeletons, tetradentate ligands containing pyridine and bipyridine skeletons have been applied in the hydrogenation of esters. The efficiency of hydrogenation of esters has been significantly improved, and the highest turnover number (TON) reached 90000 for the hydrogenation of benchmark substrates such as ethyl acetate, ethyl benzoate, and γ-valerolactone. A significant breakthrough has also been made in the catalytic asymmetric hydrogenation of esters to chiral primary alcohols. The asymmetric hydrogenations of ketoesters, racemic δ-hydroxyesters, and racemic α-aryl/alkyl substituted lactones provided efficient methods for the asymmetric synthesis of optically active chiral diols including chiral 1,5-diols and 1,4-diols. The significant progress achieved in recent years in the area of homogeneous catalytic hydrogenation of esters to alcohols is presented in this review. The focus of this review are the development of ligands and catalysts, and the advances in the catalytic asymmetric hydrogenation of esters and lactones.
Key words: ester; hydrogenation; alcohol; homogeneous catalysis; catalyst
Gu Xuesong , Li Xiaogen , Xie Jianhua , Zhou Qilin . Recent Progress in Homogeneous Catalytic Hydrogenation of Esters[J]. Acta Chimica Sinica, 2019 , 77(7) : 598 -612 . DOI: 10.6023/A19050166
[1] (a) Calvin, M. J. Am. Chem. Soc. 1939, 61, 2230.
(b) Iguchi, M. J. Chem. Soc. Japan 1939, 60, 1287.
[2] (a) Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G. J. Chem. Soc., Chem. Commun 1965, 131.
(b) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711.
[3] (a) de Vries, J. G.; Elsevier, C. J. Eds The Handbook of Homogeneous Hydrogenation, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
(b) Zhang, L.; Han, Z.; Zhang, L.; Li, M.; Ding, K. Chin. J. Org. Chem. 2016, 36, 1824(in Chinese). (张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
(c) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978(in Chinese). (李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
(d) Chen, S.; Yang, W.; Yao, Y.; Yang, X.; Deng, Y.; Yang, D. Chin. J. Org. Chem. 2018, 38, 2534(in Chinese). (陈姝琪, 杨文, 姚永祺, 杨新, 邓颖颍, 杨定乔, 有机化学, 2018, 38, 2534.)
[4] (a) Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783.
(b) Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.
[5] Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Mol. Catal. 1988, 44, 347.
[6] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
[7] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.
[8] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113.
[9] Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
[10] Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.
[11] Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.
[12] Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. V. Chem. Soc. Rev. 2018, 47, 1.
[13] Li, W.; Xie, J.-H.; Yuan, M.-L.; Zhou, Q.-L. Green Chem. 2014, 16, 4081.
[14] (a) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. V. Chem. Soc. Rev. 2015, 44, 3808.
(b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
(c) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.
(d) Clarke, M. L. Catal. Sci. Technol. 2012, 2, 2418.
[15] Acosta-Ramirez, A.; Bertoli, M.; Gusev, D. G.; Schlaf, M. Green Chem. 2012, 14, 1178.
[16] Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.; Gusev, D. G. Organometallics 2011, 30, 3479.
[17] Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5, 3288.
[18] Otsuka, T.; Ishii, A.; Dub, P. A.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 9600.
[19] Zell, T.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2014, 53, 4685.
[20] Chakraborty, S.; Dai, H.; Bhattacharya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2014, 136, 7869.
[21] Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 8722.
[22] Fairweather, N. T.; Gibson, M. S.; Guan, H. Organometallics 2015, 34, 335.
[23] Elangovan, S.; Wendt, B.; Topf, C.; Bachmann, S.; Scalone, M.; Spannenberg, A.; Jiao, H.; Baumann, W.; Junge, K.; Beller, M. Adv. Catal. Synth. 2016, 358, 820.
[24] Schneck, F.; Assmann, M.; Balmer, M.; Harms, K.; Langer, R. Organmetallics 2016, 35, 1931.
[25] Junge, H.; Wendt, B.; Jiao, H.; Beller, M. ChemCatChem 2014, 6, 2810.
[26] Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.; Abdur-Rashid, K. Organometallics 2006, 25, 4113.
[27] Elangovan, S.; Carbe, M.; Jiao, H.; Spannenberg, A.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 15364.
[28] Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg, A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2016, 138, 8809.
[29] Srimani, D.; Mukherjee, A.; Goldberg, A. F. G.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54, 12357.
[30] Korstanje T. J.; van der Vlugt, J. I.; Elsevier, C. J.; de Bruin, B. Science 2015, 350, 298.
[31] Yuwen, J.; Chakraborty, S.; Brennessel, W. W.; Jones, W. D. ACS Catal. 2017, 7, 3735.
[32] Zhang, G. Q.; Scott, B. L.; Hanson, S. K. Angew. Chem., Int. Ed. 2012, 51, 12102.
[33] Junge, K.; Wendt, B.; Cingolani, A.; Spannenberg, A.; Wei, Z.; Jiao, H.; Beller, M. Chem. Eur. J. 2018, 24, 1046.
[34] Tan, X.; Wang, Q.; Liu, Y.; Wang, F.; Lv, H.; Zhang, X. Chem. Commun. 2015, 51, 12193.
[35] Ogata, O.; Nakayama, Y.; Nara, H.; Fujiwhara, M.; Kayaki, Y. Org. Lett. 2016, 18, 3894.
[36] Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem. Int. Ed. 2012, 51, 2772.
[37] Spasyuk, D.; Gusev, D. G. Organometallics 2012, 31, 5239.
[38] Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015, 137, 3743.
[39] Gusev, D. G. ACS Catal. 2016, 6, 6967.
[40] Henrion, M.; Roisnel, T.; Couturier, J.-L.; Dubois, J.-L.; Sortais, J.-B.; Darcel, C.; Carpentier, J.-F. Mol. Catal. 2017, 432, 15.
[41] Wang, Z.; Chen, X.; Liu, B.; Liu, Q.-B.; Solan, G. A.; Yang, X.; Sun, W.-H. Catal. Sci. Technol. 2017, 7, 1297.
[42] Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2013, 52, 2538.
[43] McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T. Organometallics 2005, 24, 552.
[44] Fogler, E.; Balaraman, E.; Ben-David, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Organometallics 2011, 30, 3826.
[45] Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D. Chem. Commun. 2011, 47, 8349.
[46] Filonenko, G. A.; Cosimi, E.; Lefort, L.; Conley, M. P.; Coperet, C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. ACS Catal. 2014, 4, 2667.
[47] Filonenko, G. A.; Aguila, M. J. B.; Schulpen, E. N.; van Putten, R.; Wiecko, J.; Mgller, C.; Lefort, L.; Hensen, E. J. M.; Pidko, E. A. J. Am. Chem. Soc. 2015, 137, 7620.
[48] (a) Edworthy, I. S.; Blake, A. J.; Wilson, C.; Arnold, P. L. Organometallics 2007, 26, 3684.
(b) Edworthy, I. S.; Rodden, M.; Mungur, S. A.; Davis, K. M.; Blake, A. J.; Wilson, C.; Schröder, M.; Arnold, P. L. J. Organomet. Chem. 2005, 690, 5710.
(c) Douthwaite, R. E.; Houghton, J.; Kariuki, B. M. Chem. Commun. 2004, 6, 698.
[49] Dub, P. A.; Scott, B. L.; Gordon, J. C. Organometallics 2015, 34, 4464.
[50] Stadler, B. M.; Puylaert, P.; Diekamp, J.; van Heck, R.; Fan, Y.; Spannenberg, A.; Hinze, S.; de Vries, J. G. Adv. Synth. Catal. 2018, 360, 1151.
[51] Schörgenhumer, J.; Zimmermann, A.; Waser, M. Org. Process Res. Dev. 2018, 22, 862.
[52] Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Organometallics 2011, 30, 5716.
[53] Fogler, E.; Garg, J. A.; Hu, P.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Chem. Eur. J. 2014, 20, 15727.
[54] Espinosa-Jalapa, N. A.; Nerush, A.; Shimon, L. J. W.; Leitus, G.; Avram, L.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2017, 23, 5934.
[55] Balaraman, E.; Fogler, E.; Milstein, D. Chem. Commun. 2012, 48, 1111.
[56] Chen, T.; Li, H.; Qu, S.; Zheng, B.; He, L.; Lai, Z.; Wang, Z.-X.; Huang, K.-W. Organometallics 2014, 33, 4152.
[57] He, L.-P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-W. Organometallics 2012, 31, 5208.
[58] Kim, D.; Le, L.; Drance, M. J.; Jensen, K. H.; Bogdanovski, K.; Cervarich, T. N.; Barnard, M. G.; Pudalov, N. J.; Knapp, S. M. M.; Chianese, A. R. Organometallics 2016, 35, 982.
[59] Le, L.; Liu, J-C.; He, T-Y.; Kim, D.; Lindley, E. J.; Cervarich, T. N.; Malek, J. C.; Pham, J.; Buck, M. R.; Chianese, A. R. Organometallics 2018, 37, 3286.
[60] Sluijter, S. N.; Korstanje T. J.; van der Vlugt, J. I.; Elsevier, C. J. J. Organomet. Chem. 2017, 845, 30.
[61] Carpenter, I.; Eckelmann, S. C.; Kuntz, M. T.; Fuentes, J. A.; France, M. B.; Clarke, M. L. Dalton Trans. 2012, 41, 10136.
[62] Fuentes, J. A.; Smith, S. M.; Scharbert, T.; Carpenter, T.; Cordes, D. B.; Slawin, A. M. Z.; Clarke, M. L. Chem. Eur J. 2015, 21, 10851.
[63] Widegren, M. B.; Harkness, G. J.; Slawin, A. M. Z.; Cordes, D. B.; Clarke, M. L. Angew. Chem., Int. Ed. 2017, 56, 5825.
[64] Nie, H.; Zhou, G.; Wang, Q.; Chen, W.; Zhang, S. Tetrahedron:Asymmetry 2013, 24, 1567.
[65] Widegren, M. B.; Clarke, M. L. Org. Lett. 2018, 20, 2654.
[66] vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.
[67] Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K.-H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.
[68] Wang, F.; Tan, X.; Lv, H.; Zhang, X. Chem. Asian J. 2016, 11, 2103.
[69] Anaby, A.; Schelwies, M.; Schwaben, J.; Rominger, F.; Hashmi, A. S. K.; Schaub, T. Organometallics 2018, 37, 2193.
[70] (a) Xie, J.-H.; Bao, D.-H.; Zhou, Q.-L. Synthesis 2015, 47, 460.
(b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem. Int. Ed. 2013, 52, 4744.
[71] O, W. W. N.; Lough, A. J.; Morris, R. H. Chem. Commun. 2010, 46, 8240.
[72] O, W. W. N.; Morris, R. H. ACS Catal. 2013, 3, 32.
[73] Jansen, E.; Jongboed, L. S.; Tromp, D. S.; Lutz, M.; de Bruin, B.; Elsevier, C. J. ChemSusChem 2013, 6, 1737.
[74] Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240.
[75] Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960.
[76] Junge, K.; Wendt, B.; Westerhaus, F. A.; Spannenberg, A.; Jiao, H.; Beller, M. Chem. Eur. J. 2012, 18, 9011.
[77] Westerhaus, F. A.; Wendt, B.; Dumrath, A.; Wienhöfer, G.; Junge, K.; Beller, M. ChemSusChem 2013, 6, 1001.
[78] Brewster, T. P.; Rezayee, N. M.; Culakova, Z.; Sanford M. S.; Goldberg, K. I. ACS Catal. 2016, 6, 3113.
[79] Gajewski, P.; Gonzalez-de-Castro, A.; M.; Renom-Carrasco, M.; Piarulli, U.; Gennari, C.; de Vries, J. G.; Lefort, L.; Pignataro, L. ChemCatChem 2016, 8, 3431.
[80] van Putten, R.; Uslamin, E. A.; Garbe, M.; Liu, C.; Gonza-lez-de-Castro, A.; Lutz, M.; Junge, K.; Hensen, E. J. M.; Beller, M.; Lefort, L.; Pidko, E. A. Angew. Chem., Int. Ed. 2017, 56, 7531.
[81] Liu, C.; Xie, J.-H.; Li, Y.-L.; Chen, J.-Q.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 593.
[82] Yang, X.-H.; Xie, J.-H.; Liu, W.-P.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 7833.
[83] Arai, N.; Namba, T.; Kawaguchi, K.; Masumoto, Y.; Ohkuma, T. Angew. Chem. Int. Ed. 2018, 57, 1386.
[84] Yang, X.-H.; Wang, K.; Zhu, S.-F.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2014, 136, 17426.
[85] Yang, X.-H.; Yue, H.-T.; Yu, N.; Li, Y.-P.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2017, 8, 1811.
[86] Chen, G.-Q.; Lin, B.-J.; Huang, J.-M.; Zhao, L.-Y.; Chen, Q.-S.; Jia, S.-P.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 8064.
/
| 〈 |
|
〉 |