Hydrogen Radical Initiated 1,2-Alkynyl Migration
Received date: 2019-04-30
Online published: 2019-06-21
Supported by
Project supported by the National Natural Science Foundation of China(No. 21871112);the Qing Lan Project of Jiangsu Education Committee(No. QL2016006)
As inexpensive and readily available feedstocks, alkenes possess a unique reactivity profile and thus have been extensively applied in synthetic chemistry. Specifically, radical-triggered difunctionalization of alkenes provides a valuable synthetic strategy for their high utilization by incorporating two functional groups across the C=C π system. Despite the great achievements gained in this field, the vast majority of well-developed methods generally focus on activated alkenes, because its nascent alkyl radical needs to be stabilized by adjacent functional groups (e.g. aryl, carbonyl, heteroatom) via p-π conjugate effect. However, radical induced difunctionalization of unactivated alkenes remains elusive. Herein, a new protocol for Fe(III) mediated hydroalkynylation of unactivated olefins is reported. By using the characteristics of the in-situ-generated hydrogen radical from the interaction of Fe(acac)3 and phenylsilane, hydrogen radical-triggered intramolecular 1,2-alkynyl migration was realized in this reaction, which led to the synthesis of a series of α-alkynyl ketones with moderate to good yields. Based on the experimental results and literature reports, a reasonable reaction mechanism was proposed, which involved hydrogen radical addition, 3-exo-dig cyclization (anti-Baldwin rules) and C—C bond breaking/recombination. Moreover, the reaction features good tolerance of functional groups, in which estrone-derived 1,4-enyne could be accommodated. A typical procedure for hydroalkynylation of unactivated alkenes is as follows: Fe(acac)3 (1.2 equiv., 0.24 mmol) and NaHCO3 (1.0 equiv., 0.2 mmol) are added to the 10-mL pressure tube. Then 1,4-enynes (1.0 equiv., 0.2 mmol) and phenylsilane (2.0 equiv., 0.4 mmol) are dissolved in 1.0 mL ethyl alcohol, respectively. Both of them are injected into this vial. The reaction system was sealed and stirred at 100 ℃ until the 1,4-enynes consumed that is determined by thin layer chromatography (TLC). After the reaction completes, the resulting mixture is extracted with EtOAc for three times, then the organic phase is concentrated and evaporated on a rotary evaporator. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (V∶V=75∶1) as the eluent to afford α-alkynyl ketones.
Qi Zhao, , Shu-Jiang Tu, , Bo Jiang, . Hydrogen Radical Initiated 1,2-Alkynyl Migration[J]. Acta Chimica Sinica, 2019 , 77(9) : 927 -931 . DOI: 10.6023/A19040151
[1] | (a) Merino, E.; Nevado, C . Chem. Soc. Re. 2014, 43, 6598. |
[1] | (b) Tang, S.; Liu, K.; Liu, C.; Lei, A . Chem. Soc. Re. 2015, 44, 1070. |
[1] | (c) Koike, T.; Akita, M . Acc. Chem. Res. 2016, 49, 1937. |
[1] | (d) Studer, A.; Curran, D. P . Angew. Chem. Int. Ed. 2016, 55, 58. |
[1] | (e) Wu, K.; Liang, Y.; Jiao, N . Molecules. 2016, 21, 352. |
[1] | (f) Lan, X.-W.; Wang, N.-X.; Xing, Y . Eur. J. Org. Chem. 2017, 2017, 5821. |
[1] | (g) Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B . Chem.-Asian J. 2018, 13, 2277. |
[1] | (h) Zhang, J. G.; Wu, Z. X.; Xie, F.; Zhang, W. B . Chin. J. Org. Chem. 2018, 38, 1319. |
[1] | ( 张金刚, 吴正兴, 谢芳, 张万斌 , 有机化学, 2018, 38, 1319.) |
[1] | (i) Fu, X. F.; Zhao, W. X . Chin. J. Org. Chem. 2019, 39, 625. |
[1] | ( 付晓飞, 赵文献, , 有机化学, 2019, 39, 625.) |
[1] | (j) Yang, W. C.; Qi, X. X.; Chen, P. H.; Liu, G. S . Chin. J. 2019, 39, 122. |
[1] | ( 杨文铖, 亓晓旭, 陈品红, 刘国生 , 有机化学, 2019, 39, 122.) |
[1] | (k) Bian, R. J.; Bao, X. G . Chin. J. Org. Chem. 2017, 37, 190. |
[1] | ( 卞荣剑, 鲍晓光 , 有机化学, 2017, 37, 190.) |
[1] | (k) Jiang, B.; Li, J.; Pan, Y.-Y.; Hao, W.-J.; Li, G.; Tu, S.-J . Chin. J. Chem, 2017, 35, 323. |
[2] | (a) Yin, G.; Mu, X.; Liu, G . Acc. Chem. Re. 2016, 49, 2413; |
[2] | (b) Dhungana, R. K.; Shekhar, K. C.; Basnet, P.; Giri, R . Chem. Re. 2018, 18, 1314. |
[2] | (c) Koike, T.; Akita, M . Chem. 2018, 4, 409. |
[2] | (d) Qiu, G.; Lai, L.; Cheng, J.; Wu, J . Chem. Commun. 2018, 54, 10405. |
[2] | (e) Peng, H. H.; Yuan, Z. L.; Chen, P. H.; Liu, G. S . Chin. J. Chem. 2017, 35, 876. |
[2] | (f) Song, H.; Liu, X. Y.; Qin, Y . Acta Chim. Sinica, 2017, 75, 1137. |
[2] | ( 宋颢, 刘小宇, 秦勇 , 化学学报, 2017, 75, 1137.) |
[3] | (a) Wu, X.; Wu, S.; Zhu, C . Tetrahedron Let. 2018, 59, 1328. |
[3] | (b) Wu, X.; Zhu, C . Chin. J. Che. 2019, 37, 171; |
[3] | (c) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C . Chem. Soc. Rev. 2018, 4. 654. |
[4] | (a) Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M . Angew. Chem., Int. E. 2013, 52, 9781. |
[4] | (b) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X . Angew. Chem., Int. E. 2013, 52, 6962. |
[4] | (c) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M . Chem. Commun. 2013, 49, 7346. |
[4] | (d) Chen, Z.-M.; Zhang, Z.; Tu, Y.-Q.; Xu, M.-H.; Zhang, F.-M.; Li, C.-C.; Wang, S.-H . Chem. Commun. 2014, 50, 10805. |
[4] | (e) Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J . Chem. Commun. 2014, 50, 7642. |
[4] | (f) Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y . Org. Biomol. Chem. 2014, 12, 8394. |
[4] | (g) Chu, X.-Q.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J . Chem. Commun. 2014, 50, 9718. |
[4] | (h) Li, Y.; Liu, B.; Li, H.-B.; Wang, Q.; Li, J.-H . Chem. Commun. 2015, 51, 1024. |
[4] | (i) Song, R.-J.; Tu, Y.-Q.; Zhu, D.-Y.; Zhang, F.-M.; Wang, S.-H . Chem. Commun. 2015, 51, 749. |
[4] | (j) Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y . Chem. Commun. 2015, 51, 599. |
[5] | (a) Wu, Z.; Ren, R.; Zhu, C . Angew. Chem., Int. E. 2016, 55, 10821. |
[5] | (b) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y . Org. Let. 2016, 18, 6026. |
[5] | (c) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C . Adv. Synth. Catal. 2017, 359, 1959. |
[5] | (d) Ren, R.; Wu, Z.; Huan, L.; Zhu, C . Adv. Synth. Catal. 2017, 359, 3052. |
[6] | (a) Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C . Adv. Synth. Cata. 2018, 360, 744. |
[6] | (b) Chen, D.; Ji, M.; Yao, Y.; Zhu, C . Acta Chim. Sinic. 2018, 76, 951. |
[6] | ( 陈栋, 吉梅山, 姚英明, 朱晨 , 化学学报, 2018, 76, 951.) |
[6] | (c) Chen, D.; Wu, Z.; Yao, Y.; Zhu, C . Org. Chem. Front, 2018, 5, 2370. |
[6] | (d) Wang, N.; Wang, J.; Guo, Y.-L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H.-X.; Guo, Z.; Li, Z.-L.; Liu, X.-Y . Chem. Commun, 2018, 54, 8885. |
[7] | Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y . Angew. Chem., Int. E. 2016, 55, 15100. |
[8] | (a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C . J. Am. Chem. So. 2017, 139, 1388. |
[8] | (b) Gu, L. J.; Gao, Y.; Ai, X. H.; Jin, C.; He, Y. H.; Li, G. P.; Yuan, M. L . Chem. Commu. 2017, 53, 12946. |
[8] | (c) He, Y.; Wang, Y.; Gao, J.; Zeng, L.; Li, S.; Wang, W.; Zheng, X.; Zhang, S.; Gu, L.; Li, G . Chem. Commun. 2018, 54, 7499. |
[8] | (d) Wang, H.; Xu, Q.; Yu, S . Org. Chem. Front. 2018, 5, 2224. |
[8] | (e) Wang, M.; Wu, Z.; Zhang, B.; Zhu, C . Org. Chem. Front. 2018, 5, 1896. |
[8] | (f) Wei, X.-J.; No?l, T . J. Org. Chem. 2018, 83, 11377. |
[8] | (g) Zhang, H.; Wu, X.; Zhao, Q.; Zhu, C . Chem.-Asian J. 2018, 13, 2453. |
[8] | (h) Zhang, W.; Zou, Z.; Wang, Y.; Wang, Y.; Liang, Y.; Wu, Z.; Zheng, Y.; Pan, Y . Angew. Chem., Int. Ed. 2019, 58, 624. |
[8] | (i) Zheng, M.-W.; Yuan, X.; Cui, Y.-S.; Qiu, J.-K.; Li, G.; Guo, K . Org. Lett. 2018, 20, 7784. |
[9] | (a) Tang, X.; Studer, A . Angew. Chem., Int. E. 2018, 57, 814. |
[9] | (b) Gao, Y. Y.; Mei, H. B.; Han, J. L.; Pan, Y . Chem.-Eur. . 2018, 24, 17205. |
[10] | (a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C . Angew. Chem., Int. E. 2017, 56, 4545. |
[10] | (b) Tang, X.; Studer, A . Chem. Sc. 2017, 8, 6888. |
[10] | (c) Liu, J.; Li, W. P.; Xie, J.; Zhu, C. J . Org. Chem. Front. 2018, 5. 797. |
[11] | (a) Campbell, M. J.; Pohlhaus, P. D.; Min, G.; Ohmatsu, K.; Johnson, J. S . J. Am. Chem. So. 2008, 130, 9180. |
[11] | (b) Alabugin, I. V.; Gilmore, K.; Manoharan, M . J. Am. Chem. So. 2011, 133, 12608. |
[12] | Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B . Org. Let. 2018, 20, 3596. |
[13] | (a) Wang, Z.-X.; Bai, X.-Y.; Li, B.-J . Synlet. 2017, 28, 509. |
[13] | (b) Yang, X.; Yang, W.; Deng, Y. Y.; Yang, D. Q . Chin. J. Org. Che. 2017, 37, 2512. |
[13] | ( 杨新, 杨文, 邓颖颍, 杨定乔 , 有机化学, 2017, 37. 2512.) |
[14] | (a) Kn?pfel, T. F.; Carreira, E. M . J. Am. Chem. So. 2003, 125, 6054. |
[14] | (b) Nishimura, T.; Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T . J. Am. Chem. So. 2008, 130, 1576. |
[14] | (c) Shirakura, M.; Suginome, M . J. Am. Chem. Soc. 2008, 130, 5410. |
[14] | (d) Fillion, E.; Zorzitto, A. K . J. Am. Chem. Soc. 2009, 131, 14608. |
[14] | (e) Nishimura, T.; Sawano, T.; Hayashi, T . Angew. Chem., Int. Ed. 2009, 48, 8057. |
[14] | (f) Nishimura, T.; Tokuji, S.; Sawano, T.; Hayashi, T . Org. Lett. 2009, 11, 3222. |
[14] | (g) Shirakura, M.; Suginome, M . Org. Lett. 2009, 11, 523. |
[14] | (h) Villarino, L.; López, F.; Castedo, L.; Mascare?as, J. L . Chem.-Eur. J. 2009, 15, 13308. |
[14] | (i) Yazaki, R.; Kumagai, N.; Shibasaki, M . J. Am. Chem. Soc. 2010, 132, 10275. |
[14] | (j) Sawano, T.; Ashouri, A.; Nishimura, T.; Hayashi, T . J. Am. Chem. Soc. 2012, 134, 18936. |
[14] | (k) Dou, X.; Huang, Y.; Hayashi, T . Angew. Chem., Int. Ed. 2016, 55, 1133. |
[14] | (l) Hosseyni, S.; Smith, C. A.; Shi, X . Org. Lett. 2016, 18, 6336. |
[14] | (m) Fan, B.-M.; Yang, Q.-J.; Hu, J.; Fan, C.-L.; Li, S.-F.; Yu, L.; Huang, C.; Tsang, W. W.; Kwong, F. Y . Angew. Chem., Int. Ed. 2012, 51, 7821. |
[14] | (n) Chen, H. L.; Li, S. F.; Xu, J. B.; Yang, Q. J.; Liu, S. S.; Zhou, Y. Y.; Huang, C.; Fan, B. M . Acta Chim. Sinica. 2013, 71, 1243. |
[14] | ( 陈花磊, 李嗣锋, 徐建斌, 杨清镜, 刘珊珊, 周永云, 黄超, 樊保敏 , 化学学报, 2013, 71, 1243.) |
[14] | (o) Fan, B.; Li, S.; Chen, H.; Lu, Z.; Liu, S.; Yang, Q.; Yu, L.; Xu, J.; Zhou, Y.; Wang, J . Adv. Synth. Catal. 2013, 355, 2827. |
[15] | (a) Bai, X.-Y.; Wang, Z.-X.; Li, B.-J . Angew. Chem., Int. E. 2016, 55, 9007. |
[15] | (b) Bai, X.-Y.; Zhang, W.-W.; Li, Q.; Li, B.-J . J. Am. Chem. So. 2018, 140, 506. |
[15] | (c) Chen, Y.; Wang, Z.-X.; Li, Q.; Xu, L.-J.; Li, B.-J . Org. Chem. Front. 2018, 5. 1815. |
[16] | (a) Nishimura, T.; Katoh, T.; Takatsu, K.; Shintani, R.; Hayashi, T . J. Am. Chem. So. 2007, 129, 14158. |
[16] | (b) Shirakura, M.; Suginome, M . J. Am. Chem. So. 2009, 131, 5060. |
[16] | (c) Canterbury, D. P.; Micalizio, G. C . J. Am. Chem. Soc. 2010, 132, 7602. |
[16] | (d) Avocetien, K. F.; Li, J. J.; Liu, X.; Wang, Y.; Xing, Y.; O’Doherty, G. A . Org. Lett. 2016, 18, 4970. |
[16] | (e) Teng, H.-L.; Ma, Y.; Zhan, G.; Nishiura, M.; Hou, Z . ACS Catal. 2018, 8, 4705. |
[17] | Lo, J. C. L.; Gui, J. H.; Yabe, Y. K.; Pan, C. M.; Baran, P. S . Natur. 2014, 516, 343. |
[18] | (a) Lo, J. C.; Yabe, Y.; Baran, P. S . J. Am. Chem. So. 2014, 136, 1304. |
[18] | (b) Gui, J. H.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S . Scienc. 2015, 348, 886. |
[18] | (c) Dao, H. T.; Li, C.; Michaudel, Q.; Maxwell, B. D.; Baran, P. S . J. Am. Chem. Soc. 2015, 137, 8046. |
[18] | (d) Zheng, J.; Wang, D.; Cui, S . Org. Lett. 2015, 17, 4572. |
[18] | (e) Zheng, J.; Qi, J.; Cui, S . Org. Lett. 2016, 18, 128. |
[18] | (f) Shen, Y.; Qi, J.; Mao, Z.; Cui, S . Org. Lett. 2016, 18, 2722. |
[18] | (g) Qi, J.; Zheng, J.; Cui, S . Org. Chem. Front. 2018, 5, 222. |
[18] | (h) Qi, J.; Zheng, J.; Cui, S . Org. Lett. 2018, 20, 1355. |
[18] | (i) Deng, Z.; Chen, C.; Cui, S . RSC Adv. 2016, 6, 93753. |
[19] | Shen, Y.; Huang, B.; Zheng, J.; Lin, C.; Liu, Y.; Cui, S . Org. Let. 2017, 19, 1744. |
[20] | CCDC 1913020 (3e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via . |
/
〈 |
|
〉 |