Research Progress of Inverted Perovskite Solar Cells
Received date: 2019-04-24
Online published: 2019-07-04
Supported by
Project supported by the National Natural Science Foundation of China(61774169);Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan(2016JJ3140);Undergraduate student of Central South University(ZY20180866);Undergraduate student of Central South University(202321009)
Since the introduction of perovskite solar cells in 2009, perovskite solar cells have developed rapidly due to their low-cost and high theoretical photoelectric conversion efficiency. Among them, the inverted structure of perovskite solar cells has received more and more attention due to its good stability and low hysteresis effect. Since its inception in 2013, its photoelectric conversion efficiency has rapidly increased from the initial 3.9% to 21.5%. However, compared with the traditional upright structure perovskite solar cells, there is still a gap in the photoelectric conversion efficiency of inverted perovskite solar cells. Due to the nature of the organic materials used, perovskites are more severely affected by moisture in the air environment. They are heavily dependent on nitrogen protection during device manufacturing. In the future, if perovskite solar cells are put into production, the fully enclosed waterless environment will obviously increase the production costs. At the same time, the development of large-area preparation technology is still a difficult problem to be solved. The development of inverted perovskite solar cells, the selection of carrier transport materials, interface optimization, and the development of flexible devices are systematically reviewed in this paper. For example, PEDOT:PSS was doped by GeO2 and DMSO, and PEDOT:PSS was modified by MoO3 and GO to improve its work function, acidity and hygroscopicity. A NiOx dense layer is usually doped with Mg 2+, Li + and Cs 4+ to increase its conductivity, which can be prepared by different methods such as magnetron sputtering and sol-gel method. The PCBM interface is modified by C60, BCP, LiF etc., to enhance its ohmic contact with the metal counter electrode. And the PCBM is doped by graphene, CoSe, SnO2 etc., to reduce the charge recombination caused by the interfacial resistance and the defects of the perovskite film. This paper would provide a way to obtain a high efficiency inverted perovskite solar cells by structure and material optimization. And it also give insights into the general rules for preparing large area and flexible devices.
Ying Yang, , Congtan Zhu, , Feiyu Lin, , Tian Chen, , Dequn Pan, , Xueyi Guo, . Research Progress of Inverted Perovskite Solar Cells[J]. Acta Chimica Sinica, 2019 , 77(10) : 964 -976 . DOI: 10.6023/A19040143
[1] | Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T . J. Am. Chem. Soc. 2009, 131, 6050. |
[2] | Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/ cell-efficiency.html. |
[3] | Yang, Y.; Wang, W . J. Power Sources 2015, 293, 577. |
[4] | Meng, L.; You, J.; Guo, T.; Yang, Y . Acc. Chem. Res. 2015, 49, 155. |
[5] | Lian, X.; Chen, J.; Fu, R.; Lau, T. K.; Zhang, Y.; Wu, G.; Lu, X.; Fang, Y.; Yang, D.; Chen, H . J. Mater. Chem. A 2018, 6, 24633. |
[6] | Lee, J. W.; Kim, S. G.; Bae, S. H.; Lee, D. K.; Lin, O.; Yang, Y.; Park, N. G . Nano Lett. 2017, 17, 4270. |
[7] | Jeng, J.; Chiang, Y.; Lee, M. H.; Peng, S.; Guo, T.; Chen, P.; Wen, T . Adv. Mater. 2013, 25, 3727. |
[8] | Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.; Song, T.; Liu, R.; Lee, S.; Sun, B . Nano Res. 2014, 7, 1749. |
[9] | Wang, K.; Jeng, J.; Shen, P.; Chang, Y.; Diau, E. W.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P.; Chen, P.; Guo, T.; Wen, T . Sci. Rep. 2014, 4, 4756. |
[10] | Kim, J. H.; Liang, P.; Williams, S. T.; Cho, N.; Chueh, C. C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y . Adv. Mater. 2015, 27, 695. |
[11] | Hu, Z.; Chen, D.; Yang, P.; Yang, L.; Qin, L.; Huang, Y.; Zhao, X . Appl. Surf. Sci. 2018, 441, 258. |
[12] | Wei, Y.; Yao, K.; Wang, X.; Jiang, Y.; Liu, X.; Zhou, N.; Li, F . Appl. Surf. Sci. 2018, 427, 782. |
[13] | Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gr?tzel, M.; Han, L . Science 2015, 350, 944. |
[14] | Chen, W.; Liu, F.; Feng, X.; Aleksandra, B. D.; Chan, W.; He, Z . Adv. Energy Mater. 2017, 7, 1700722. |
[15] | Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S. Nano Lett. 2019, 19, 3313. |
[16] | Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Gustavo F., T.; John, F. W.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.; Richard, H. F.; Gong, Q.; Snaith, H. J.; Zhu, R . Science 2018, 360, 1442. |
[17] | Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Mohammad, K. N.; Henk, J. B . Nat. Photonics 2014, 8, 128. |
[18] | Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H . Energy Environ. Sci. 2015, 8, 1602. |
[19] | Sawanta, S. M.; Kim, H.; Kim, H. H.; Shim, S. E.; Hong, C. K . Mater. Today 2018, 21, 483. |
[20] | Wang, Y.; Duan, C.; Li, J.; Han, W.; Zhao, M.; Yao, L.; Wang, Y.; Yan, C.; Jiu, T . ACS Appl. Mater. Interf. 2018, 10, 20128. |
[21] | Zheng, X.; Deng, Y.; Chen, B.; Wei, H.; Xiao, X.; Fang, Y.; Lin, Y.; Yu, Z.; Liu, Y.; Wang, Q.; Huang, J . Adv. Mater. 2018,1803428. |
[22] | Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Krol, R.; Moehl, T.; Gr?tzel, M.; Moser, J. E . Nat. Photonics 2014, 8, 250. |
[23] | Chen, K.; Hu, Q.; Liu, T.; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Russell, T. P.; Zhu, R.; Gong, Q . Adv. Mater. 2016, 28, 10718. |
[24] | Na, S.; Kim, S.; Jo, J.; Kim, D . Adv. Mater. 2008, 20, 4061. |
[25] | Liu, H.; Li, M.; Richard, B. K.; Chen, S.; Pei, Q . ACS Appl. Mater. Interf. 2018, 10, 15609. |
[26] | Yang, P.; Tang, Q . Electrochim. Acta 2016, 188, 560. |
[27] | Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X . Nano Energy 2016, 26, 123. |
[28] | Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.; Sun, Z.; Wang, J.; Zhou, C.; Wang, Y.; Guo, X.; Chu, P.; Yu, X . Adv. Mater. 2016, 28, 8787. |
[29] | Gao, J.; Yang, Y.; Yan, J.; Zhang, Z.; Pan, D.; Dai, Q.; Guo, X . J. Alloy. Compd. 2018, 764, 482. |
[30] | Yang, Y.; Chen, T.; Pan, D.; Zhang, Z.; Guo, X . Acta Chim. Sinica 2018, 76, 997 (in Chinese). |
[30] | ( 杨英, 陈甜, 潘德群, 张政, 郭学益 , 化学学报 2018, 76, 997.) |
[31] | Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y . Adv. Mater. 2014, 26, 3748. |
[32] | Lim, K. G.; Kim, H. B.; Jeong, J.; Kim, H.; Kim, J. Y.; Lee, T. W . Adv. Mater. 2014, 26, 6461. |
[33] | Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J . Nat. Commun. 2015, 6, 7747. |
[34] | Lou, Y.; Li, M.; Wang, Z . Appl. Phys. Lett. 2016, 108, 053301. |
[35] | Qian, M.; Li, M.; Shi, X.; Ma, H.; Wang, Z; Liao, L . J. Mater. Chem. A 2015, 3, 10533. |
[36] | Huang, P.; Yuan, L.; Li, Y.; Zhou, W.; Song, B . Acta Phys.-Chim. Sin. 2018, 34, 1264 (in Chinese). |
[36] | ( 黄鹏, 元利刚, 李耀文, 周祎, 宋波 , 物理化学学报, 2018, 34, 1264.) |
[37] | Huang, D.; Goh, T.; Kong, J.; Zheng, Y.; Zhao, S.; Xu, Z.; Taylor, A. D . Nanoscale 2017, 9, 4236. |
[38] | Hu, L.; Sun, K.; Wang, M.; Chen, W.; Yang, B.; Fu, J.; Xiong, Z.; Li, X.; Tang, X.; Zang, Z.; Zhang, S.; Sun, L.; Li, M . ACS Appl. Mater. Interf. 2017, 9, 43902. |
[39] | Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M . J. Mater. Chem. A 2017, 5, 5701. |
[40] | Yu, J.; Hong, J.; Jung, E.; Kim, D. B.; Baek, S. M.; Lee, S.; Cho, S.; Park, S. S.; Choi, K. J.; Song, M . Sci. Rep. 2018, 8, 1070. |
[41] | Yoon, S.; Ha, T. J.; Kang, D. W . Nanoscale 2017, 9, 9754. |
[42] | Luo, H.; Lin, X.; Hou, X.; Pan, L.; Huang, S.; Chen, X . Nano-Micro Lett. 2017, 9, 39. |
[43] | Jhuo, H. J.; Yeh, P. N.; Liao, S. H.; Li, Y. L.; Sharma, S.; Chen, S. A . J. Mater. Chem. A 2015, 3, 9291. |
[44] | Sung, H.; Ahn, N.; Jang, M.; Lee, J.; Yoon, H.; Park, N.; Choi, M . Adv. Energy Mater. 2015, 6, 1501873. |
[45] | Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y . Nat. Rev. Mater. 2017, 2, 17042. |
[46] | Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S. E.; Anthopoulos, T.; McCulloch, I . J. Am. Chem. Soc. 2009, 131, 10814. |
[47] | Serpetzoglou, E.; Konidakis, I.; Kakavelakis, G.; Maksudov, T.; Kymakis, E.; Stratakis, E . ACS Appl. Mater. Interf. 2017, 9, 43910. |
[48] | Xiao, X.; Bao, C.; Fang, Y.; Dai, J.; Ecker, B. R.; Wang, C.; Lin, Y.; Tang, S.; Liu, Y.; Deng, Y.; Zheng, X.; Gao, Y.; Zeng, X.; Huang, J . Adv. Mater. 2018, 30, 1705176. |
[49] | Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J . Nat. Energy 2018, 3, 560. |
[50] | Wang, Q.; Bi, C.; Huang, J . Nano Energy 2015, 15, 275. |
[51] | Zhou, Z.; Li, X.; Cai, M.; Xie, F.; Wu, Y.; Lan, Z.; Yang, X.; Qiang, Y.; Ashraful, I.; Han, L . Adv. Energy Mater. 2017, 7, 1700763. |
[52] | Yan, W.; Li, Y.; Li, Y.; Ye, S.; Liu, Z.; Wang, S.; Bian, Z.; Huang, C . Nano Res. 2015, 8, 2474. |
[53] | Yan, W.; Li, Y.; Li, Y.; Ye, S.; Liu, Z.; Wang, S.; Bian, Z.; Huang, C . Nano Energy 2015, 16, 428. |
[54] | Chiang, T.; Fan, G.; Jeng, J.; Chen, K.; Chen, P.; Wen, T.; Guo, T.; Wong, K . ACS Appl. Mater. Interf. 2015, 7, 24973. |
[55] | Zhao, D.; Sexton, M.; Park, H. Y.; George, B.; Juan, C. N.; Franky, S . Adv. Energy Mater. 2014, 5, 1570031. |
[56] | Choi, H.; Mai, C. K.; Kim, H. B.; Jeong, J.; Song, S.; Bazan, G. C.; Kim, J. Y.; Heeger, A. J . Nat. Commun. 2015, 6, 7348. |
[57] | Li, X.; Liu, X.; Wang, X.; Zhao, L.; Jiu, T.; Fang, J . J. Mater. Chem. A 2015, 3, 15024. |
[58] | Luo, S.; Sun, Y.; Hu, Q . Shangdong Ceram. 2010, 33, 0014. |
[59] | Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J . Nat. Commun. 2013, 4, 2761. |
[60] | Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y. B.; Han, L . Energy Environ. Sci. 2015, 8, 629. |
[61] | Cui, J.; Meng, F.; Zhang, H.; Cao, K.; Yuan, H.; Cheng, Y.; Huang, F.; Wang, M . ACS Appl. Mater. Interf. 2014, 6, 22862. |
[62] | Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C.; Hwang, C. S.; Seok, S. I . Adv. Mater. 2015, 27, 4013. |
[63] | Tang, L.; Chen, X.; Wen, T; Yang, S.; Zhao, J.; Qiao, H.; Hou, Y.; Yang, H . Chem 2018, 24, 2845. |
[64] | Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K . J. Phys. Chem. Lett. 2014, 5, 1748. |
[65] | Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C . Nano Lett. 2015, 15, 3723. |
[66] | Wang, H.; Yu, Z.; Jiang, X.; Li, J.; Cai, B.; Yang, X.; Sun, L . Energy Technol. 2017, 5, 1836. |
[67] | Yu, W.; Li, F.; Wang, H.; Alarousu, E.; Chen, Y.; Lin, B.; Wang, L.; Hedhili, M. N.; Li, Y.; Wu, K.; Wang, X.; Mohammed, O. F.; Wu, T . Nanoscale 2016, 8, 6173. |
[68] | Yu, Z.; Fu, W.; Liu, W.; Zhang, Z.; Liu, Y.; Yan, J.; Ye, T.; Yang, W.; Li, H.; Chen, H . Chinese Chem. Lett. 2017, 28, 13. |
[69] | Guo, C. X.; Sun, K.; Ouyang, J.; Lu, X . Chem. Mater. 2015, 27, 5813. |
[70] | Wu, Z.; Bai, S.; Xiang, J.; Yuan, Z.; Yang, Y.; Cui, W.; Gao, X.; Liu, Z.; Jin, Y.; Sun, B . Nanoscale 2014, 6, 10505. |
[71] | Yeo, J. S.; Kang, R.; Lee, S.; Jeon, Y. J.; Myoung, N. S.; Lee, C. L.; Kim, D. Y.; Yun, J. M.; Seo, Y. H.; Kim, S. S.; Na, S. I . Nano Energy 2015, 12, 96. |
[72] | Zhang, Y.; Yao, Z.; Lin, S.; Li, J Lin, H . Acta Chim. Sinica 2015, 73, 219 (in Chinese). |
[72] | ( 张烨, 姚志博, 林仕伟, 李建保, 林红, 化学学报, 2015, 73, 219.) |
[73] | Xue, Q.; Sun, C.; Hu, Z.; Huang, F.; Ye, X.; Cao, Y . Acta Chim. Sinica 2015, 73, 179 (in Chinese). |
[73] | ( 薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛, 化学学报, 2015, 73, 179.) |
[74] | Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485. |
[75] | Zuo, F.; Williams, S. T.; Liang, P. W.; Chueh, C. C.; Liao, C. Y.; Jen, A. K . Adv. Mater. 2014, 26, 6454. |
[76] | Bai, X.; Shi, Y.; Wang, K.; Dong, Q.; Xing, Y.; Zhang, H.; Wang, L.; Ma, T . Acta Phys.-Chim. Sin. 2015, 31, 285 (in Chinese). |
[76] | ( 白晓功, 史彦涛, 王开, 董庆顺, 邢玉瑾, 张鸿, 王亮, 马廷丽 , 物理化学学报, 2015, 31, 285.) |
[77] | Noel, N.; Stranks, S.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.; Sadhanala, A.; Eperon, G.; Pathak, S.; Johnston, M.; Petrozza, A.; Herz, L.; Snaith, H. J . Energy Environ. Sci. 2014, 7, 3061. |
[78] | Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. |
[79] | Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G . Nat. Photonics 2014, 8, 489. |
[80] | Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I . Nano Lett. 2013, 13, 1764. |
[81] | Chen, X.; Xie, J.; Wang, W.; Yuan, H.; Xu, Y.; Zhang, T.; He, Y.; Shen, H . Acta Chim. Sinica 2019, 77, 9 (in Chinese). |
[81] | ( 陈薪羽, 解俊杰, 王炜, 袁慧慧, 许頔, 张焘, 何云龙, 沈沪江, 化学学报 , 2019, 77, 9.) |
[82] | Wu, M.; Liu, S.; Chen, H.; Wei, X.; Li, M.; Yang, Z.; Ma, X . Acta Chim. Sinica 2018, 76, 49 (in Chinese). |
[82] | ( 吴苗苗, 刘世强, 陈浩, 魏雪虎, 李洺阳, 杨志宾, 马向东, 化学学报, 2018, 76, 49.) |
[83] | Wang, F.; Cao, Y. Z.; Chen, C.; Chen, Q.; Wu, X.; Li, X. G.; Qin, T. S.; Huang, W . Adv. Funct. Mater. 2018, 28, 1803753. |
[84] | Jiang, K.; Wu, F.; Yu, H.; Yao, Y.; Zhang, G.; Zhu, L.; Yan, H . J. Mater. Chem. A 2018, 6, 16868. |
[85] | Wu, J. L.; Huang, W. K.; Chang, Y. C.; Tsai, B. C.; Hsiao, Y. C.; Chang, C. Y.; Chen, C. T . J. Mater. Chem. A 2017, 5, 12811. |
[86] | Wu, F.; Gao, W.; Yu, H.; Zhu, L.; Li, L.; Yang, C . J. Mater. Chem C 2018, 6, 4443. |
[87] | Liu, X.; Li, X.; Zou, Y.; Liu, H.; Wang, L.; Fang, J.; Yang, C . J. Mater. Chem. A 2019, 7. |
[88] | You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. ACS Nano 2014, 8, 1674. |
[89] | Chiang, C. H.; Tseng, Z. L.; Wu, C. G . J. Mater. Chem. A 2014, 2, 15897. |
[90] | Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. Nano Lett. 2015, 15, 2756. |
[91] | Xia, F.; Wu, Q.; Zhou, P.; Li, Y.; Chen, X.; Liu, Q.; Zhu, J.; Dai, S.; Lu, Y.; Yang, S . ACS Appl. Mater. Interf. 2015, 7, 13659. |
[92] | Kakavelakis, G.; Maksudov, T.; Konios, D.; Paradisanos, I.; Kioseoglou, G.; Stratakis, E.; Kymakis, E . Adv. Energy Mater. 2016, 7. |
[93] | Bae, J. H.; Noh, Y. J.; Kang, M.; Kim, D. Y.; Kim, H. B.; Oh, S. H.; Yun, J. M.; Na, S. I . RSC Adv. 2016, 6. |
[94] | Chen, S.; Yang, S.; Sun, H.; Zhang, L.; Peng, J.; Liang, Z.; Wang, Z. S . J. Power Sources 2017, 353, 123. |
[95] | Gu, P. Y.; Wang, N.; Wu, A.; Wang, Z.; Tian, M.; Fu, Z.; Sun, X. W.; Zhang, Q . Chem-Asian J. 2016, 11, 2135. |
[96] | Jia, J.; Wu, J.; Dong, J.; Fan, L.; Huang, M.; Lin, J.; Lan, Z. Chem. Commun. 2018, 54, 3170. |
[97] | Yang, D.; Zhou, L.; Yu, W.; Zhang, J.; Li, C . Adv. Energy Mater. 2014, 4, 1400591. |
[98] | Zhang, Y.; Hu, X.; Chen, L.; Huang, Z.; Fu, Q.; Liu, Y.; Zhang, L.; Chen, Y. Org. Electron. 2016, 30, 281. |
[99] | Du, Y.; Cai, H.; Bao, X.; Xing, Z.; Wu, Y.; Xu, J.; Huang, L.; Ni, J.; Li, J.; Zhang, J . ACS Sustain. Chem. Eng. 2017, 6, 1083. |
[100] | Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C. H.; Jen, A. K. ChemSusChem 2017, 10, 3794. |
[101] | Tavakoli, M. M.; Lin, Q.; Leung, S. F.; Lui, G. C.; Lu, H.; Li, L.; Xiang, B.; Fan, Z. Nanoscale 2016, 8, 4276. |
[102] | Jeon, I.; Yoon, J.; Ahn, N.; Atwa, M.; Delacou, C.; Anisimov, A.; Kauppinen, E. I.; Choi, M.; Maruyama, S.; Matsuo, Y . J. Phys. Chem. Lett. 2017, 8, 5395. |
[103] | Luo, Q.; Ma, H.; Hao, F.; Hou, Q.; Ren, J.; Wu, L.; Yao, Z.; Zhou, Y.; Wang, N.; Jiang, K.; Lin, H.; Guo, Z . Adv. Funct. Mater. 2017, 27, 1703068. |
[104] | Hong, I. K.; Choi, M. J.; Lim, K.; Kim, C.; Kwon, Y. H.; Park, S. K . Adv. Energy Mater. 2018,1702872. |
[105] | Najafi, M.; Di, G. F.; Zhang, D.; Shanmugam, S.; Senes, A.; Verhees, W.; Hadipour, A.; Galagan, Y.; Aernouts, T.; Veenstra, S.; Andriessen, R. Small 2018, 14, 1702775. |
[106] | Cristina, R. C.; Malinkiewicz, O.; Soriano, A.; Espallargas, G. M.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddine, M. K.; Bolink, H. J . Energy Environ. Sci. 2014, 7, 994. |
[107] | Kaltenbrunner, M.; Adam, G.; G?owacki, E. D.; Drack, M.; Schw?diauer, R.; Leonat, L.; Apaydin, D. H.; Groiss, H.; Scharber, M. C.; White, M. S.; Sariciftci, N. S.; Bauer, S. Nat. Mater. 2015, 14, 1032. |
/
〈 |
|
〉 |