Palladium-Catalyzed Decarboxylative Coupling of Potassium Oxalate Monoester with 2-Aryloxypyridines
Received date: 2019-05-22
Online published: 2019-07-09
Supported by
Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).
Transition metal-catalyzed C—H activation has attracted extensive attention because of its excellent functional group tolerance and high efficiency. Among them, palladium-catalyzed reactions exhibit versatile catalytic cycles and have mild conditions compared to others. Therefore, the palladium-catalyzed C—H activation has been employed broadly as a practical strategy in synthetic chemistry during the past decade. Since the first example of palladium-catalyzed decarboxylative C—H acylation using α-oxocarboxylic acids was reported in 2008, a lot of substrates have been employed to synthesize acylated products due to the easily available α-oxocarboxylic acids as well as the importance of acylation. However, the transition metal-catalyzed C—H esterification via decarbonylation is still limited. Our group previously developed the first directed C—H esterification of methyl ketoximes and 2-phenylpyridines by using potassium oxalate monoester as the decarboxylative reagent. Encouraged by this impressive result as well as the importance of salicylate derivatives in drug discovery, herein we disclose the efficient palladium-catalyzed decarboxylative esterification of 2-aryloxpyridines. This reaction proceeds smoothly with potassium oxalate monoester, affording the desired products in moderate to good yields (50%~82%). Compared to our previous work, the electron-donating pyridinyloxy (PyO) group as the directing group and six-membered metallocycle intermediate dramatically enhance the practicability and substrate tolerance of the present method. In addition, one of the products has been chosen as the model compound to deprotect the directing group to get the valuable salicylate derivative. The present method not only provides an efficient and convenient protocol for the synthesis of ethyl salicylate derivatives, but also enriches the diversity of Pd(Ⅱ)/Pd(IV) catalytic reactions. A general procedure for the esterification of 2-aryloxypyridines 1 with potassium oxalate monoester 2 is as following:a mixture of 1 (0.5 mmol), Pd(OAc)2 (10 mol%), K2S2O8 (1.0 mmol), Ag2CO3 (1.0 mmol), 2 (1.0 mmol), D-CSA (0.125 mmol), and 1,4-dioxane (2.5 mL) in a 25 mL tube was heated at 80℃ for a suitable time. The reaction mixture was cooled to room temperature, and concentrated in vacuo. Purification of the residue by column chromatography on silica gel with petroleum ether and ethyl acetate as the eluent provided the desired product 3.
Li Zhong-Yuan , Jing Kun , Li Qi-Li , Wang Guan-Wu . Palladium-Catalyzed Decarboxylative Coupling of Potassium Oxalate Monoester with 2-Aryloxypyridines[J]. Acta Chimica Sinica, 2019 , 77(8) : 729 -734 . DOI: 10.6023/A19050190
[1] For selected reviews on the transition-metal-catalyzed C-H activation, see:(a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
(c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(d) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(e) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
(f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
(g) Huang, F.; Chen, X.; Xie, Y.; Zeng, W. Chin. J. Org. Chem. 2017, 37, 31. (黄房生, 陈训, 谢应, 曾伟, 有机化学, 2017, 37, 31.)
(h) Yang, J.; Fu, T.; Long, Y.; Zhou, X. Chin. J. Org. Chem. 2017, 37, 1111. (杨军, 付婷, 龙洋, 周向葛, 有机化学, 2017, 37, 1111.)
(i) Zhu, L.; Cao, X.; Li, Y.; Liu, T.; Wang, X.; Qiu, R.; Yin, S.-F. Chin. J. Org. Chem. 2017, 37, 1613. (朱龙志, 曹鑫, 李优, 刘婷, 王勰, 邱仁华, 尹双凤, 有机化学, 2017, 37, 1613.)
(j) Li, H.; Ren, X.; Zhao, W.; Tang, X.; Wang, G. Chin. J. Org. Chem. 2017, 37, 2287. (李桦, 任相伟, 赵温涛, 唐向阳, 王光伟, 有机化学, 2017, 37, 2287.)
(k) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873. (骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
(l) Ding, H.; Li, J.; Guo, Q.; Xiao, Y. Chin. J. Org. Chem. 2017, 37, 3112. (丁怀伟, 李娟, 郭庆辉, 肖琰, 有机化学, 2017, 37, 3112.)
(m) Huang, J.; Gu, Q.; You, S. Chin. J. Org. Chem. 2018, 38, 51. (黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.)
(n) Wang, S.; Yan, F.; Wang, L.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291. (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
(o) Luo, J.; Xu, X.; Zheng, J. Chin. J. Org. Chem. 2018, 38, 363. (骆钧飞, 徐星, 郑俊良, 有机化学, 2018, 38, 363.)
(p) Gu, Z.; Ji, S. Acta Chim. Sinica 2018, 76, 347. (顾正洋, 纪顺俊, 化学学报, 2018, 76, 347.)
(q) Xu, L.; Huang, Y.; Liu, B.; Niu, Y.; Huo, X. Chin. J. Org. Chem. 2018, 38, 812. (徐利革, 黄亿, 刘炳艮, 牛云宏, 火星, 有机化学, 2018, 38, 812.)
(r) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930. (钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
(s) Xu, L.; Xu, H.; Lin, H.; Dai, H. Chin. J. Org. Chem. 2018, 38, 1940. (徐琳琳, 徐辉, 林海霞, 戴辉雄, 有机化学, 2018, 38, 1940.)
(t) Ren, Q.; Nie, B.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2018, 38, 2465. (任青云, 聂飚, 张英俊, 张霁, 有机化学, 2018, 38, 2465.)
(u) Wu, Y.; Xi, Y.; Zhao, M.; Wang, S. Chin. J. Org. Chem. 2018, 38, 2590. (吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590.)
(v) Zhao, K.; Yang, L.; Liu, J.; Xia, C. Chin. J. Org. Chem. 2018, 38, 2833. (赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833.)
(w) Yang, F.; Zhang, H.; Liu, X.; Wang, B.; Ackermann, L. Chin. J. Org. Chem. 2019, 39, 59. (杨帆致, 张晗, 刘旭日, 王博, Lutz Ackermann, 有机化学, 2019, 39, 59.)
(x) Cheng, H.; Lin, J.; Zhang, Y.; Chen, B.; Wang, M.; Cheng, L.; Ma, J. Chin. J. Org. Chem. 2019, 39, 318. (程辉成, 林锦龙, 张耀丰, 陈冰, 王敏, 程丽华, 马姣丽, 有机化学, 2019, 39, 318.)
[2] For selected examples, see:(a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
(b) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
(c) Gandeepan, P.; Cheng, C.-H. J. Am. Chem. Soc. 2012, 134, 5738.
[3] For selected examples, see:(a) Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2.
(b) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740.
[4] Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837.
[5] (a) Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai,J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.
(b) Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.
[6] For selected examples, see:(a) Huang, C.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 12406.
(b) Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2015, 54, 2255.
[7] Kakiuchi, F.; Igi, K.; Matsumoto, M.; Hayamizu, T.; Chatani, N.; Murai, S. Chem. Lett. 2002, 3, 396.
[8] Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.
[9] (a) Ma, W.; Ackermann, L. Chem. Eur. J. 2013, 19, 13925.
(b) Liu, B.; Jiang, H.-Z.; Shi, B.-F. J. Org. Chem. 2014, 79, 1521.
[10] (a) Ackermann, L.; Diers, E.; Manvar, A. Org. Lett. 2012, 14, 1154.
(b) Chu, J.-H.; Lin, P.-S.; Wu, M.-J. Organometallics 2010, 29, 4058.
[11] Xu, Y.; Liu, P.; Li, S.-L.; Sun, P. J. Org. Chem. 2015, 80, 1269.
[12] Zhang, C.; Sun, P. J. Org. Chem. 2014, 79, 8457.
[13] (a) Liang, Y.-F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. ACS Catal. 2015, 5, 1956.
(b) Zhang, W.; Zhang, J.; Ren, S.; Liu, Y. J. Org. Chem. 2014, 79, 11508.
[14] Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.
[15] Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304.
[16] Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792.
[17] Peng, X.; Zhu, Y.; Ramirez, T. A.; Zhao, B.; Shi, Y. Org. Lett. 2011, 13, 5244.
[18] Wang, S.; Yang, Z.; Liu, J.; Xie, K.; Wang, A.; Chen, X.; Tan, Z. Chem. Commun. 2012, 48, 9924.
[19] Liu, B.; Jiang, H.-Z.; Shi, B.-F. Org. Biomol. Chem. 2014, 12, 2538.
[20] Li, Z.-Y.; Wang, G.-W. Org. Lett. 2015, 17, 4866.
[21] For a review, see:(a) Wang, G.-W. Top. Organometal. Chem. 2016, 55, 119. For selected examples, see:(b) Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380.
(c) Li, Z.-Y.; Li, L.; Li, Q.-L.; Jing, K.; Xu, H.; Wang, G.-W. Chem. Eur. J. 2017, 23, 3285.
(d) Jing, K.; Li, Z.-Y.; Wang, G.-W. ACS Catal. 2018, 8, 11875.
(e) Jing, K.; Wang, X.-N.; Wang, G.-W. J. Org. Chem. 2019, 84, 161.
[22] Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
[23] For selected example, see:Kim, M.; Park, J.; Sharma, S.; Kim, A.; Park, E.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Chem. Commun. 2013, 49, 925.
[24] Mashayekh, S.; Rahmanipour, N.; Mahmoodi, B.; Ahmadi, F.; Motaharian, D.; Shahhosseini, S.; Shafaroodi, H.; Banafshe, H. R.; Shafiee, A.; Navidpour, L. Bioorg. Med. Chem. 2014, 22, 1929.
[25] Zhang, W.; Zhang, J.; Ren, S.; Liu, Y. J. Org. Chem. 2014, 79, 11508.
/
〈 |
|
〉 |