Perspective

Radical-Type Difunctionalization of Alkenes with CO2

  • Zhen Zhang, ,
  • Li Gong, ,
  • Xiao-Yu Zhou, ,
  • Si-Shun Yan, ,
  • Jing Li, ,
  • Da-Gang Yu,
Expand
  • a Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106
    b Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064

Received date: 2019-06-12

  Online published: 2019-07-12

Supported by

Project supported by the “973” Project from the Ministry of Science and Technology of China(No.2015CB856600);the National Natural Science Foundation of China(Nos.21822108);the National Natural Science Foundation of China(21801025);the Fok Ying Tung Education Foundation(No.161013);the Fundamental Research Funds for the Central Universities.

Abstract

CO2 is an ideal C1 source in chemical transformations. It is of great significance to utilize CO2 in chemical conversion to synthesize high value-added compounds, including carboxylic acids and carbonyl-containing heterocycles. On the other hand, the difunctionalization of olefins is an important organic reaction, which can efficiently convert easily available olefins into important compounds with structural diversity. However, due to the low reactivity of CO2 and the difficulty in controlling the selectivity, the difunctionalization of olefins with CO2 is highly challenging. Recently, the significant progress of radical chemistry has provided new strategies and promoted the development of novel transformations in this field. This Perspective summarizes the recent progress of the radical-type difunctionalization of olefins with CO2, including the oxy-alkylation, carbocarboxylation, silacarboxylation, thiocarboxylation, and dicarboxylation of alkenes with CO2. At the same time, we also highlight the mechanism with radicals and four kinds of pathways are proposed: (1) Free radicals attack olefins to form new carbon radical intermediates. The radicals are then oxidized to form carbocations, which are further captured by carbonates or carbamates. It is also possible for direct C—O bonding reaction or sequent C—I and C—O bonds formation. (2) The new carbon radical intermediates, in-situ generated through attack of alkenes with radicals, are reduced via single electron transfer into carbanions, which could attack CO2 to form C—C bonds. (3) CO2 is reduced into CO2 radical anions in the highly reductive reaction conditions. Once generated, the CO2 radical anions might attack olefins to form carboxylate bearing more stable carbon radical intermediates (such as benzylic ones) and further form C—C bonds or carbon-heteroatom bonds. (4) Olefins are reduced via single electron transfer into alkenyl free radical anions in the highly reductive reaction conditions. These anions may attack CO2 to form carboxylate bearing carbon radical intermediates and are further reduced to generate carbanions. Finally they may attack another CO2 to form succinic acid derivatives. We point out the challenges and predict the future development in the field, including the more challenging substrates, more reaction types, better selectivities, and deeper mechanistic understanding.

Cite this article

Zhen Zhang, , Li Gong, , Xiao-Yu Zhou, , Si-Shun Yan, , Jing Li, , Da-Gang Yu, . Radical-Type Difunctionalization of Alkenes with CO2[J]. Acta Chimica Sinica, 2019 , 77(9) : 783 -793 . DOI: 10.6023/A19060208

References

[1] (a) Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010.
[1] (b) He, L.-N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013 (in Chinese).
[1] ( 何良年 , 二氧化碳化学, 科学出版社, 北京, 2013).
[1] (c) Centi, G.; Perathoner, S. Green Carbon Dioxide: Advances in CO2 Utilization, Wiley-VCH, Weinheim, 2014.
[2] Selected reviews on CO2 utilization to generate the C—O/C—C bonds, see:(a) Huang, K.; Sun, C.-L.; Shi, Z.-J.Chem. Soc. Rev. 2011, 40, 2435.
[2] (b) Martin, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259.
[2] (c) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
[2] (d) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.
[2] (e) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395.
[2] (f) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[2] (g) B?rjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739.
[2] (h) Zhang, L.; Han, Z.; Zhang, L.; Li, M.; Ding, K. Chin. J. Org. Chem. 2016, 36, 1824 (in Chinese).
[2] ( 张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824)
[2] (i) Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813 (in Chinese).
[2] ( 朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813)
[2] (j) Zhang, W.; Guo, C.; Lu, X. Chin. J. Catal. 2016, 37, 215.
[2] (k) Zhang, H.; Sun, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 2843 (in Chinese).
[2] (仉花, 孙宏建, 李晓燕, 有机化学, 2016, 36, 2843.)
[2] (l) Zhang, S.; Li, X.; He, L.-N. Acta Chim. Sinica 2016, 74, 17 (in Chinese).
[2] (张帅, 李雪冬, 何良年, 化学学报, Acta Chim. Sinica 2016, 74, 17.
[2] (m) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707.
[2] (n) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
[2] (o) Luo, J.; Larrosa, I. ChemSusChem 2017, 10, 1337.
[2] (p) Zhang, Z.; Ju, T.; Ye, J.-H.; Yu, D.-G. Synlett 2017, 28, 741.
[2] (q) Zou, B.; Hu, C. Chin. J. Chem. 2017, 35, 541.
[2] (r) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978 (in Chinese).
[2] (李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978)
[2] (s) Zhang, W.; Zhang, N.; Guo, C.; Lü, X. Chin. J. Org. Chem. 2017, 37, 1309 (in Chinese).
[2] (张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309)
[2] (t) Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. Chin. J. Chem. 2018, 36, 961.
[2] (u) Zhao, Y.; Liu, Z. Chin. J. Chem. 2018, 36, 455;
[2] (v) Zhang, Y.; Cen, J.; Xiong, W.; Qi, C.; Jiang, H. Prog. Chem. 2018, 30, 547 (in Chinese).
[2] (张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.)
[2] (w) Wang, L.; Sun, W.; Liu, C. Chin. J. Chem. 2018, 36, 353.
[2] (x) Chen, Y.-G.; Xu, X.-T.; Zhang, K.; Li, Y.-Q.; Zhang, L.-P.; Fang, P.; Mei, T.-S. Synthesis 2018, 50, 35.
[2] (y) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
[2] (z) Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242 (in Chinese).
[2] (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[3] (a) Sasano, K.; Takaya, J.; Iwasawa, N . J. Am. Chem. Soc. 2013, 135, 1251.
[3] (b) Sekine K.; Sadamitsu Y.; Yamada, T. Org. Lett. 2015, 17, 5706.
[3] (c) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem., Int. Ed. 2016, 55, 5053.
[3] (d) Miao, B.; Li, S.; Li, G.; Ma, S. Org. Lett. 2016, 18, 2556., 6987.
[3] (e) Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2016, 138, 5547.
[3] (f) Gholap, S. S.; Takimoto, M.; Hou, Z. Chem. Eur. J. 2016, 22, 8547.
[3] (g) Yan, S.-S.; Zhu, L.; Ye, J.-H.; Zhang, Z.; Huang, H.; Zeng, H.; Li, C.-J.; Lan, Y.; Yu, D.-G. Chem. Sci. 2018, 9, 4873.
[3] (h) Song, L.; Zhu, L.; Zhang, Z.; Ye, J.-H.; Yan, S.-S.; Han, J.-L.; Yin, Z.-B.; Lan, Y.; Yu, D.-G. Org. Lett. 2018, 20, 3776.
[3] (i) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.; Zhou, L.; Yuan, D.; Sun, Q.; Li, G. Nat. Catal. 2018, 1, 469.
[3] (j) Xiong, W. F.; Yan, D. H.; Qi, C. R.; Jiang, H. F. Org. Lett. 2018, 20, 672.
[3] (k) Wang, S.; Xi, C. J. Org. Lett. 2018, 20, 4131.
[3] (l) Song, L.; Cao, G.-M.; Zhou, W.; Ye, J.-H.; Zhang, Z.; Tian, X.-Y.; Li, J.; Yu, D.-G. Org. Chem. Front. 2018, 5, 2086.
[3] (m) Cai, Z.; Li, S.; Gao, Y.; Li, G. Adv. Synth. Catal. 2018, 360, 4005.
[3] (n) Huang, R.; Li, S.; Fu, L.; Li, G. Asian J. Org. Chem. 2018, 7, 1376.
[3] (o) Gao, Y.; Cai, Z.; Li, S.; Li, G. Org. Lett. 2019, 21, 3663.
[3] (p) Yan, S.-S.; Wu, D.-S.; Ye, J.-H.; Gong, L.; Zeng, X.; Ran, C.-K.; Gui, Y.-Y.; Li, J.; Yu, D.-G. ACS Catal. 2019, 9, 6987.
[4] (a) Seo, H; Katcher, M. H.; Jamison, T. F.Nat. Chem. 2017, 9, 453.
[4] (b) Meng, Q.; Wang, S.; K?nig, B. Angew. Chem.,Int. Ed. 2017, 56, 13426.
[4] (c) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467.
[4] (d) Liao, L.-L.; Cao, G.-M.; Ye, J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G. J. Am. Chem. Soc. 2018, 140, 17338.
[4] (e) Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2018, 57, 13897.
[4] (f) Fan, X.; Gong, X.; Ma, M.; Wang, R.; Walsh, P. J. Nat. Commun. 2018, 9, 4936.
[5] (a) Wang, H.; Lin, M.-Y.; Fang, H. J.; Chen, T. T.; Lu, J.-X. Chin. J. Chem. 2007, 25, 913.
[5] (b) Wang, H.; Du, Y. F.; Lin, M. Y.; Zhang, K.; Lu, J.-X. Chin. J. Chem. 2008, 26, 1745.
[5] (c) Jiao, K.; Li, Z.; Xu, X.; Zhang, L.; Li, Y.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2008, 5, 2244.
[6] (a) Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, Kim; Skrydstrup, T. Angew. Chem. Int. Ed. 2015, 54, 6862.
[6] (b) Zhang, W.; Yang, M. W.; Lv, X . Green Chem. 2016, 18, 4181.
[6] (c) Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G . Angew. Chem., Int. Ed., 2016, 55, 7068.
[6] (d) Wang, S.; Shao, P.; Du, G.; Xi, C . J. Org. Chem. 2016, 81, 6672.
[7] (a) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem. Int. Ed. 2015, 54, 5399.
[7] (b) Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648.
[7] (c) Zhao, Y.; Wu, Y.; Yuan, G.; Hao, L.; Gao, X.; Yang, Z.; Yu, B.; Zhang, H.; Liu, Z. Chem. Asian J. 2016, 11, 2735.
[8] (a) Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 9568.
[8] (b) Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 6316.
[8] (c) Zhang, Y.; Wang, H.; Yuan, H.; Shi, F. ACS Sustainable Chem. Eng. 2017, 5, 5758.
[8] (d) Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310.
[9] (a) Lehn, J.-M.; Ziessel, R. Proc. Natl. Acad. Sci. USA 1982, 79, 701.
[9] (b) Burgess, S. A.; Kendall, A. J.; Tyler, D. R.; Linehan, J. C.; Appel, A. M. ACS Catal. 2017, 7, 3089.
[10] (a) Pupo, G.; Properzi, R.; List, B. Angew. Chem., Int. Ed. 2016, 55, 6099.
[10] (b) Riemer, D.; Mandaviya, B.; Schilling, W.; G?tz, A. C.; Kühl, T.; Finger, M.; Das, S. ACS Catal. 2018, 8, 3030.
[10] (c) Roy, T.; Kim, M. J.; Yang, Y.; Kim, S.; Kang, G.; Ren, X.; Kadziola, A.; Lee, H.-Y.; Baik, M.-H. Lee, J.-W. ACS Catal. 2019, 9, 6006.
[11] For selected reviews see: (a) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732.
[11] (b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J . Synthesis 2015, 47, 604.
[11] (c) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937.
[11] (d) Koike, T.; Akita, M. Chem 2018, 4, 409.
[11] (e) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
[11] (f) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328.
[12] (a) Yan, M.; Kawamata, Y.; Baran, P. S.. Chem. Rev. 2017, 117, 13230.
[12] (b) Zhang, Z.; Ye, J.-H.; Wu, D.-S.; Zhou, Y.-Q.; Yu, D.-G. Chem. Asian J. 2018, 13, 2292.
[12] (c) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A; Peshkov, A. A.; Vander Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861.
[12] (d) Tortajada, A.; Juliá-Hernández, F.; B?rjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948.
[12] (e) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G.-Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439.
[12] (f) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[12] (g) Hou, J.; Li, J.-S.; Wu, J. Asian J. Org. Chem. 2018, 7, 1439.
[12] (h) Tan, F.; Yin, G. Chin. J. Chem. 2018, 36, 545.
[12] (i) Yeung, C. S. Angew. Chem.,Int. Ed. 2019, 58, 5492. 5492.
[13] Luan, Y.-X.; Ye, M. Tetrahedron Lett. 2018, 59, 853.
[14] (a) Tominaga, K.-I.; Sasaki, Y. Catal. Commun. 2000, 1, 1.
[14] (b) Tominaga, K.-i.; Sasaki, Y. J. Mol. Catal. A: Chem. 2004, 220, 159.
[14] (c) Liu, Q.; Wu, L.; Fleischer, I.; Selent, D.; Franke, R.; Jackstell, R..; Beller, M.. Chem. - Eur. J. 2014, 20, 6888.
[14] (d) Tani, Y.; Kuga, K.; Fujihara, T.; Terao, J.; Tsuji, Y.. Chem. Commun. 2015, 51, 13020.
[14] (e) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G.. J. Am. Chem. Soc. 2017, 139, 17011.
[15] Seo, H.; Liu, A.-F.; Jamison, T. F . J. Am. Chem. Soc. 2017, 139, 13969.
[16] (a) Evans, D. A.; Bartroli, J.; Shih, L. T. J. Am. Chem. Soc. 1981, 103, 2127.
[16] (b) Pandit, N.; Singla, R. K.; Shrivastava, B. Int. J. Med. Chem. 2012, 2012, 159285.
[16] (c) Ed.: Acton, Q. A., Oxazolidinones-Advances in Research and Application, Scholarly Editions, Atlanta, U.S., 2012.
[17] Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022.
[18] Zhu, L.; Ye, J.-H.; Duan, M.; Qi, X.; Yu, D.-G.; Bai, R.; Lan, Y . Org. Chem. Front. 2018, 5, 633.
[19] Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G . ACS Catal. 2017, 7, 8324.
[20] Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
[21] Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G . Org. Lett. 2017, 20, 190.
[22] Zhou, W.-J.; Cao, G.-M.; Sen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[23] (a) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G . Org. Lett. 2018, 20, 3049.
[23] (b) For a very recent work, see: Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J . Org. Lett. 2019, DOI: 10.1021/acs.org- lett.9b02700.
[24] Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 10915.
[25] Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J . Angew. Chem.,Int. Ed. 2017, 57, 17220.
[26] Ye, J.-H.; Miao, M.; Huang, H.; Yan, S.-S.; Yin, Z.-B.; Zhou, W.-J.; Yu, D.-G. Angew. Chem.,Int. Ed. 2017, 56, 15416.
[27] Senboku, H.; Komatsu, H.; Fujimura, Y.; Tokuda, M . Synlett 2001, 2001, 418.
[28] Yuan, G.-Q.; Jiang, H.-F.; Lin, C.; Liao, S.-J . Electrochim. Acta 2008, 53, 2170.
[29] Li, C.-H.; Yuan, G.-Q.; Ji, X.-C.; Wang, X.-J.; Ye, J.-S.; Jiang, H.-F . Electrochim. Acta 2011, 56, 1529.
[30] For a very recent work on phosphonocarboxylation of alkenes with CO2, see: Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G . Nat. Commun. 2019, 10, 3592.
Outlines

/