Controlled Assembly of Chiral Structure of Diphenylalanine Peptide
Received date: 2019-06-28
Online published: 2019-08-16
Supported by
the National Natural Science Foundation of China(21433010);the National Natural Science Foundation of China(21872151);the National Natural Science Foundation of China(21320102004)
Chirality is ubiquitous in nature and it plays an important role in both biological and material sciences. Inspired by nature, scientists have prepared various chiral structures or hybrid materials by self-assembly of polypeptides, amino acids, carbohydrates and their derivatives. These studies provide a good model for understanding of supramolecular chirality and mimicking the self-assembly of organisms. In the past decade, diphenylalanine (FF) and its derivatives have attracted great attentions and have been substantially studied. FF is derived from the core recognition motif of the Alzheimer's disease β-amyloid polypeptide, and it could readily self-assemble into nanotubes, nanowires, nanovesicles, nanofibers and microtubes. Moreover, the polymorphisms of FF-based assemblies can be easily manipulated by controlling the experimental conditions such as concentrations, solvents, pH and temperatures. However, there is few report on the chiral structures obtained from the self-assembly of FF and its derivatives. In this paper, we selected cationic diphenylalanine peptide (CDP) as the assembly units and have obtained CDP nanofibers and helical fibers in ethanol solution by controlling the aging time. Scanning electron microscope (SEM) and atomic force microscope (AFM) were used to characterize the morphologies of CDP assemblies. The mechanism for the formation of CDP nanofibers and helical fibers in ethanol solution was studied by infrared spectroscopy and circular dichroism spectroscopy. It was found that CDP was first assembled into nanofibers. With the increase of aging time, CDP nanofibers twisted and finally assembled into helical fibers similar to the ropes. Spectral data analysis showed that the transformation of nanofibers into helical fibers was mainly due to the strong electrostatic repulsion between positive charges in adjacent peptide molecules and the β-sheet secondary structure controlled by hydrogen bonding between peptide segments. This work realizes the regulation of supramolecular assembly structure by simply controlling the ripening time, and provides a simple and feasible method for the controlled preparation of supramolecular chiral assembly.
Qi Li , Yi Jia , Junbai Li . Controlled Assembly of Chiral Structure of Diphenylalanine Peptide[J]. Acta Chimica Sinica, 2019 , 77(11) : 1173 -1176 . DOI: 10.6023/A19060241
[1] | Bada J. L. Nature 1995, 374, 594 |
[2] | Liu M.; Zhang L.; Wang T. Chem. Rev. 2015, 115, 7304 |
[3] | Zhang L.; Qin L.; Wang X. F.; Cao H.; Liu M. H. Adv. Mater. 2014, 26, 6959 |
[4] | Cao H.; Zhu X.; Liu M. Angew. Chem. Int. Ed. 2013, 52, 4122 |
[5] | He C. Q.; Han Y. C.; Fan Y. X.; Deng M. L.; Wang Y. L. Langmuir 2012, 28, 3391 |
[6] | Huang Z.; Che S. Chem. Rec. 2015, 15, 665 |
[7] | Dong S.; Feng X.; Liu X. Chem. Soc. Rev. 2018, 47, 8525 |
[8] | Xie J.; Zhou Q. Chin. Sci. Bull. 2015, 60, 2679 |
[8] | 谢 建华; 周 其林 科学通报 2015, 60, 2679 |
[9] | Yan X.; Zhu P.; Li J. Chem. Soc. Rev. 2010, 39, 1877 |
[10] | Tao K.; Makam P.; Aizen R.; Gazit E. Science 2017, 358, eaam9756 |
[11] | Wei G.; Su Z.; Reynolds N. P.; Arosio P.; Hamley I. W.; Gazit E.; Mezzenga R. Chem. Soc. Rev. 2017, 46, 4661 |
[12] | Wang J.; Liu K.; Xing R.; Yan X. Chem. Soc. Rev. 2016, 45, 5589 |
[13] | Zong Q.; Geng H.; Wang L.; Ye L.; Zhang A.; Shao Z.; Feng Z. Acta Chim. Sinica 2015, 73, 423 |
[13] | 宗 倩颖; 耿 慧敏; 王 璐; 叶 霖; 张 爱英; 邵 自强; 冯 增国 化学学报 2015, 73, 423 |
[14] | Yan X.; Li J.; M hwald H. Adv. Mater. 2011, 23, 2796 |
[15] | Liu K.; Yuan C.; Zou Q.; Xie Z.; Yan X. Angew. Chem. Int. Ed. 2017, 56, 7876 |
[16] | Li Q.; Jia Y.; Dai L.; Yang Y.; Li J. ACS Nano 2015, 9, 2689 |
[17] | Sun B. B.; Li Q.; Riegler H.; Eickelmann S.; Dai L. R.; Yang Y.; Perez-Garcia R.; Jia Y.; Chen G. X.; Fei J. B.; Holmberg K.; Li J. B. ACS Nano 2017, 11, 10489 |
[18] | Ma H.; Fei J.; Cui Y.; Zhao J.; Wang A.; Li J. Chem. Commun. 2013, 49, 9956 |
[19] | Ma H.; Fei J.; Li Q.; Li J. Small 2015, 11, 1787 |
[20] | Wang J.; Zou Q.; Yan X. Acta Chim. Sinica 2017, 75, 933 |
[20] | 王 娟; 邹 千里; 闫 学海 化学学报 2017, 75, 933 |
[21] | Niu D.; Ji L.; Ouyang G.; Liu M. Chem. Commun. 2018, 54, 1137 |
[22] | Lamm M. S.; Rajagopal K.; Schneider J. P.; Pochan D. J. J. Am. Chem. Soc. 2005, 127, 16692 |
[23] | Barth A.; Zscherp C. Q. Rev. Biophys. 2002, 35, 369 |
[24] | Jackson M.; Mantsch H. H. Biochim. Biophys. Acta 1991, 1078, 231 |
[25] | Sanchez de Groot N.; Parella T.; Aviles F. X.; Vendrell J.; Ventura S. Biophys. J. 2007, 92, 1732 |
[26] | Li Q.; Ma H.; Wang A.; Jia Y.; Dai L.; Li J. Adv. Opt. Mater. 2015, 3, 194 |
[27] | Yan X. H.; Cui Y.; He Q.; Wang K. W.; Li J. B. Chem. Mater. 2008, 20, 1522 |
[28] | Guler M. O.; Soukasene S.; Hulvat J. F.; Stupp S. I. Nano Lett. 2005, 5, 249 |
[29] | Wang M. N.; Han Y. C.; Qiao F. L.; Wang Y. L. Soft Matter 2015, 11, 1517 |
[30] | Fu Y.; Li B.; Huang Z.; Li Y.; Yang Y. Langmuir 2013, 29, 6013 |
[31] | Sang Y. T.; Duan P. F.; Liu M. H. Chem. Commun. 2018, 54, 4025 |
/
〈 |
|
〉 |