Article

Synergistic Removal of Co-contamination by Heterogeneous Fenton System: Chemical Conversion, pH Effect and Mechanism Analysis

  • Bo Yang, ,
  • Yongli Zhang,
Expand
  • College of Architecture & Environment, Sichuan University, Chengdu 610065, China

Received date: 2019-06-08

  Online published: 2019-09-05

Supported by

Project supported by the National Natural Science Foundation of China(51878422)

Abstract

The chemical transformation of ZVI micro-surface and the degradation mechanism in the process of synergistic removal of copper ions and methylene blue pollutants by ZVI-Fenton system were studied systematically. The samples of ZVI, before and after reaction in the ZVI/H2O2 and ZVI/H2O2-Cu systems, were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and Fourier Transform infrared spectroscopy (FTIR) to research the changes of ZVI surface structure, Fe and Cu species’ chemical conversion. The results showed that the residual corrosion products on the surface of ZVI were more and the corrosion products were mainly Fe3O4 and Fe2O3 after reaction in the ZVI/H2O2 system. However, in the ZVI/H2O2-Cu system, the corrosion effect of ZVI was more significant, but the residual corrosion products of ZVI surface were less, and the proportion of Fe3O4 increased. In addition, the main reduction product of Cu 2+ was Cu 0, which was accompanied by the generation of CuO. Furthermore, the effects of pH on the removal of pollutants from the five systems (ZVI, ZVI-Cu, H2O2-Cu, ZVI/H2O2 and ZVI/H2O2-Cu) were compared and the changes in TCu and TFe concentrations under different pH conditions were monitored. The results indicated that the ZVI/H2O2-Cu system not only simultaneous effectively remove MB and TCu compared with other three systems, but also enlarged the effective pH range (pH=2.5~5.5) of ZVI-Fenton system. In addition, free radical capture experiments showed that hydroxyl radicals played an important role in the oxidative degradation of methylene blue, and 10 mmol/L tert-butanol could completely capture hydroxyl radicals in the system. Finally, the mechanism of synergistic removal of TCu and MB degradation by ZVI-Fenton system was revealed. The substitution reaction between ZVI and Cu 2+, the action of Cu 0 and ZVI galvanic cells, the acid corrosion effect, and the redox cycle of iron and copper together accelerate the degradation of MB by the system and promote the conversion of ZVI surface substances. This study provides a theoretical basis for collaborative treatment of industrial complex pollutants.

Cite this article

Bo Yang, , Yongli Zhang, . Synergistic Removal of Co-contamination by Heterogeneous Fenton System: Chemical Conversion, pH Effect and Mechanism Analysis[J]. Acta Chimica Sinica, 2019 , 77(10) : 1017 -1023 . DOI: 10.6023/A19060203

References

[1] Fu, F.; Dionysiou, D. D.; Liu, H. J. Hazard. Mater. 2014, 267, 194.
[2] Yamaguchi, R.; Kurosu, S.; Suzuki, M.; Kawase, Y . Chem. Eng. J. 2018, 334, 1537.
[3] Wei, X. Y.; Gao, N. Y.; Li, C. J.; Deng, Y.; Zhou, S. Q.; Li, L. Chem. Eng. J. 2016, 285, 660.
[4] Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L . Chemosphere 2017, 174, 665.
[5] Ling, R.; Chen, J. P.; Shao, J.; Reinhard, M. Water Res. 2018, 134, 44.
[6] Liu, J.; Ou, C.; Han, W.; Faheem, F.; Shen, J.; Bi, H.; Sun, X.; Li, J.; Wang, L. RSC Adv. 2015, 5, 57444.
[7] Cho, Y.; Choi, S. I . Chemosphere 2010, 81, 940.
[8] Zheng, Z. Q.; Lu, G. N.; Wang, R.; Huang, K. B.; Tao, X. Q.; Yang, Y. L.; Zou, M. Y.; Xie, Y. Y.; Yin, H. Environ. Pollut. 2019, 245, 780.
[9] Gu, T. H.; Shi, J. M.; Hua, Y. L.; Liu, J.; Wang, W.; Zhang, W. X . Acta Chim. Sinica 2017, 75, 991.
[9] ( 顾天航, 石君明, 滑熠龙, 刘静, 王伟, 张伟贤, 化学学报, 2017, 75, 991.)
[10] Li, Z.; Luo, S. Q.; Yang, Y.; Chen, J. W . Chemosphere 2019, 216, 499.
[11] Cai, C.; Wang, L. G.; Gao, H.; Hou, L. W.; Zhang, H. J. Environ. Sci. 2014, 26, 1267.
[12] Cao, C. J.; Liu, X. G.; Ju, X. R.; Chen, X. R . Acta Phys.-Chim. Sin. 2013, 29, 2475.
[12] ( 曹崇江, 刘晓庚, 鞠兴荣, 陈晓荣 , 物理化学学报, 2013, 29, 2475.)
[13] Huang, X. Y.; Wang, W.; Lin, L.; Zhang, W. X . Acta Chim. Sinica2017, 75, 529.
[13] ( 黄潇月, 王伟, 凌岚, 张伟贤, 化学学报, 2017, 75, 529.)
[14] Liu, J.; Gu, T. H.; Wang, W.; Liu, A. R.; Zhang, W. X . Acta Chim. Sinica 2019, 77, 121.
[14] ( 刘静, 顾天航, 王伟, 刘爱荣, 张伟贤, 化学学报, 2019, 77, 121.)
[15] Li, J. H.; Lin, C. F.; Qin, W.; Xiao, X. B.; Wei, L. Acta Phys.-Chim. Sin. 2016, 32, 2717.
[15] ( 李继红, 林常枫, 覃吴, 肖显斌, 魏利 , 物理化学学报, 2016, 32, 2717.)
[16] Jiang, X.; Qiao, J.; Lo, I. M.; Wang, L.; Guan, X.; Lu, Z.; Zhou, G.; Xu, C. J. Hazard. Mater. 2015, 283, 880.
[17] Fu, R. B.; Yang, Y. P.; Xu, Z.; Zhang, X.; Guo, X. P.; Bi, D. S . Chemosphere 2015, 138, 726.
[18] Diao, Z.-H.; Xu, X.-R.; Jiang, D.; Liu, J.-J.; Kong, L.-J.; Li, G.; Zuo, L.-Z.; Wu, Q.-H . Chem. Eng. J. 2017, 315, 167.
[19] Liu, C. M.; Diao, Z. H.; Huo, W. Y.; Kong, L. J.; Du, J. J. Environ. Pollut. 2018, 239, 698.
[20] Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Colloids Surf., A 2017, 514, 1.
[21] Li, H.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M. Chem. Eng. J. 2014, 237, 487.
[22] Xu, C. H.; Zhang, B. L.; Wang, Y. H.; Shao, Q. Q.; Zhou, W. Z.; Fan, D. M.; Bandstra, J. Z.; Shi, Z. Q.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 11879.
[23] Zhang, L.; Shao, Q.; Xu, C . J. Clean. Prod. 2019, 213, 753.
[24] Liu, W.; Sun, W.; Borthwick, A. G. L.; Wang, T.; Li, F.; Guan, Y . J. Hazard. Mater. 2016, 317, 385.
[25] Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36, 1564.
[26] Choi, K.; Lee, W. J. Hazard. Mater. 2012, 211-212, 146.
[27] Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Chem. Eng. J. 2016, 294, 290.
[28] Gao, Y. Y.; Li, H. X.; Ou, Z. Z.; Hao, P.; Li, Y.; Yang, G. Q. Acta Phys.-Chim. Sin. 2011, 27, 2469.
[28] ( 高云燕, 李海霞, 欧植泽, 郝平, 李嫕, 杨国强 , 物理化学学报, 2011, 27, 2469.)
[29] Gotic, M.; Music, S. J. Mol. Struct. 2007, 834, 445.
[30] Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, L.; Xie, Y.; Zeng, Y.; Zhao, F. Chem. Eng. J. 2017, 316, 410.
[31] Cai, X.; Gao, Y.; Sun, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Chem. Eng. J. 2014, 244, 19.
[32] Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I. M.; He, D.; Dong, Water Res. 2015, 75, 224.
[33] Wang, N.; Zheng, T.; Jiang, J.; Wang, P . Chem. Eng. J. 2015, 260, 386.
[34] Zhou, P.; Zhang, J.; Zhang, Y.; Zhang, G.; Li, W.; Wei, C.; Liang, J.; Liu, Y.; Shu, S. J. Hazard. Mater. 2018, 344, 1209.
Outlines

/