Article

Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions

  • Lei Shi ,
  • Hongwei Pang ,
  • Xiangxue Wang ,
  • Pan Zhang ,
  • Shujun Yu
Expand
  • a MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
    b Heibei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China

Received date: 2019-07-26

  Online published: 2019-09-24

Abstract

Graphene oxide (GO) is widely used in energy chemical, environmental restoration, nanomaterials, liquid phase catalysis, etc. due to its excellent physical and chemical properties. At the same time, GO is inevitably discharged into nature during the application process, and the toxicity released into the environment may lead to instability of the biological system. Therefore, this paper systematically studied several common cations (Na+, K+, Ca2+, Mg2+), anions (PO43-, SO42-, CO32-, HCO3-, Cl-) and clay minerals (montmorillonite, kaolin, bentonite, nano-alumina) on GO coagulation at different concentrations. And FTIR is used to characterize the clay minerals before and after the precipitation of GO. The experimental results show that the cations have strong GO coagulation ability, and the coagulation ability of different valence cations has a large difference. After analysis, the electrical properties of GO in aqueous solution are negative, the cation acts as a counter ion, and the coagulation behavior conforms to the Schulze-Hardy rule. The main reason for the difference in coagulation ability between isovalent cations is electronegativity and ionic hydration. The anion acts to increase the stability of GO, and the coagulation ability of the cation is more effective than the stabilization ability of the anion. The ability of sodium salts with the same valence anion to coagulate GO also differs, mainly because the hydrolysis of HCO3- and CO32- causes a decrease in the negative charges, resulting in a decrease in the ability to stabilize GO. The clay minerals contain hydroxyl and metal-oxygen bonds that interact with GO. According to the maximum removal rate, the clay minerals have the coagulation ability:nano-alumina > kaolin > bentonite > montmorillonite. The main influencing factors are the electrical properties of clay minerals in aqueous solution. This paper is helpful to understand the coagulation behavior of GO in different water environments, and it is of great significance for the future application of graphene engineering in pollution control.

Cite this article

Lei Shi , Hongwei Pang , Xiangxue Wang , Pan Zhang , Shujun Yu . Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions[J]. Acta Chimica Sinica, 2019 , 77(11) : 1177 -1183 . DOI: 10.6023/A19070276

References

[1] Loh K. P.; Bao Q. L.; Ang P. K.; Yang J. X. J. Mater. Chem. 2010, 20, 2277.
[2] Dreyer D. R.; Park S. J.; Bielawski C. W.; Ruoff R. S. Chem. Soc. Rev. 2010, 39, 228.
[3] Chen D.; Feng H.; Li J. Chem. Rev. 2012, 112, 6027.
[4] Stoller M. D.; Park S. J.; Zhu Y. W.; An j.; Ruoff R. S. Nano Lett. 2008, 8, 3498.
[5] Zhao K. L.; Hao Y.; Zhu M.; Cheng G. S. Acta Chim. Sinica. 2018, 76, 168.
[5] 赵 克丽; 郝 莹; 朱 墨; 程 国胜 化学学报 2018, 76, 168.
[6] Zhang S. W.; Zhang J.; Wu S. D.; lv W.; Kang F. Y.; Yang Q. H. Acta. Chim. Sinica. 2017, 75, 163.
[6] 张 思伟; 张 俊; 吴 思达; 吕 伟; 康 飞宇; 杨 全红 化学学报 2017, 75, 163.
[7] Zhong G. Y.; Wang H. J.; Yu H.; Peng F. Acta Chim. Sinica. 2017, 75, 943
[7] 钟 国玉; 王 红娟; 余 皓; 彭 峰 化学学报 2017, 75, 943
[8] Wang X.; Li Y. B.; Du L. Y.; Gao F. J.; Wu Q.; Yang L. J.; Chen Q.; Wang X. J.; Hu Z. Acta Chim. Sinica. 2018, 76, 627.
[8] 王 啸; 李 有彬; 杜 玲玉; 高 福杰; 吴 强; 杨 立军; 陈 强; 王 喜章; 胡 征 化学学报 2018, 76, 627.
[9] Lu J. H.; Tan S. Z.; Zhu Y. Q.; Li W.; Chen T. X.; Wang Y.; Liu C. Acta Chim. Sinica. 2019, 77, 253
[9] 卢 静荷; 谭 淑珍; 朱 雨清; 李 伟; 陈 天啸; 王 瑶; 刘 陈 化学学报 2019, 77, 253
[10] Ma W. H.; Chang Y. Z.; Han G. Y.; Xiao Y. M.; Fu D. Y.; Chang Y. H. Chinese J. Chem. 2017, 35, 1844.
[11] Yang X. L.; Cai H. Y.; Bao M. Y.; Yu J. Q.; Lu J. R.; Li Y. M. Chinese J. Chem. 2017, 35, 1549.
[12] Li M. Y.; Liu R. Q.; Han G. Y.; Tian Y. N.; Chang Y. Z.; Xiao Y. M. Chinese J. Chem. 2017, 35, 1405.
[13] Song C. Y.; Sun X.; Ye K.; Zhu K.; Cheng H.; Yan J.; Cao D. X.; Wang G. L. Acta. Chim. Sinica. 2017, 75, 1003
[13] 宋 聪颖; 孙 逊; 叶 克; 朱 凯; 程 魁; 闫 俊; 曹 殿学; 王 贵领 化学学报 2017, 75, 1003
[14] Liao K. H.; Lin Y. S.; Macosko C. W.; Haynes C. L. ACS Appl. Mater. Interfaces 2011, 3, 2607.
[15] Gao Y.; Chen K.; Ren X. M.; Ahmed A.; Tasawar H.; Chen C. L. Environ. Sci. Technol. 2018, 52, 12208.
[16] Gao Y; Wu J. C.; Ren X. M.; Tan X. L. Tasawar H.; Ahmed A.; Cheng C.; Chen C. L. Environ. Sci.:Nano 2017, 4, 1016.
[17] Gao Y.; Ren X. M.; Wu J. C.; Tasawar H.; Ahmed A.; Cheng C.; Chen C. l. Environ. Sci.:Nano 2018, 5, 362.
[18] Wang J.; Yao W.; Gu P. C.; Yu S. J.; Wang X. X.; Du Y.; Wang H. Q.; Chen Z. S.; Hayat T.; Wang X. K. Cellulose 2016, 24, 85
[19] Vallabani N. V. S.; Mittal S.; Shukla R. K.; Pandey A. K.; Dhakate S. R.; Pasricha R.; Dhawan A. J. Biomed. Nanotechnol. 2011, 7, 106.
[20] Akhavan O.; Ghaderi E. ACS Nano 2010, 4, 5731.
[21] Hu J.; Zhang C. X.; Jiang L.; Fang S. D.; Zhang X. D.; Wang X. K.; Meng Y. D. J. Power Sources 2014, 248, 831.
[22] Zaghouane-Boudiaf H.; Boutahala M.; Arab L. Chem. Eng. J. 2012, 187, 142.
[23] Wang J.; Wang X. X.; Tan L. Q.; Chen Y. T.; Hayat T.; Hu J.; Alsaedi A.; Ahmad B.; Guo W.; Wang X. K. Chem. Eng. J. 2016, 297, 106.
[24] Meunier N.; Drogui P.; Montane C.; Hausler R.; Mercier G.; Blais J. F. J. Hazard. Mater. 2006, 137, 581.
[25] Qiang S. R.; Wang M. Y.; Liang J. J.; Zhao X. L.; Fan Q. H.; Geng R. Y.; Luo D. X.; Li Z. B.; Zhang L. Mater. Chem. Phys. 2020, 239, 122016.
[26] Yang K. J.; Chen B. L.; Zhu X. Y.; Xing B. S. Environ. Sci. Technol. 2016, 50, 11066.
[27] Chowdhury I.; Mansukhani N. D.; Guiney L. M.; Hersam M. C.; Bouchard D. Environ. Sci. Technol. 2015, 49, 10886.
[28] Zeng Z. Y.; Wang Y. L.; Zhou Q. B.; Yang K.; Lin D. H. Environ. Pollut. 2019, 250, 366.
[29] Zhao J.; Liu F. F.; Wang Z. Y.; Cao X. S.; Xing B. S. Environ. Sci. Technol. 2015, 49, 2849.
[30] Liang J. J.; Li P.; Zhao X. L.; Liu Z. Y.; Fan Q. H.; Li Z.; Wang D. Q. Nanoscale 2018, 3, 1383
[31] Park C. M.; Chu K. H.; Heo J.; Her N.; Jang M.; Son A.; Yoon Y. J. Hazard. Mater. 2016, 309, 133.
[32] Li N.; Ma J. Z.; Bao Y. Chem. Res. 2009, 20, 98
[32] 李 娜; 马 建中; 鲍 艳 化学研究 2009, 20, 98
[33] Huang G. X.; Guo H. Y.; Zhao J.; Liu Y. H.; Xing B. S. Water Res. 2012, 102, 313
[34] Anirudhan T. S.; Ramachandran M. Proc. Saf. Environ. Prot. 2015, 95, 215.
[35] Chowdhury I.; Duch M. C.; Mansukhani N. D.; Hersam M. C.; Bouchard D. Environ. Sci. Technol. 2013, 47, 6288.
[36] Wu L.; Liu L.; Gao B.; Mu?oz-Carpena R.; Zhang M.; Chen H.; Zhou Z. H.; Wang H. Langmuir 2013, 29, 15174.
[37] Ma J. C.; Dougherty D. A. Chem. Rev. 1997, 97, 1303.
[38] Trivedi P.; Axe L.; Dyer J. Colloids Surf. A 2001, 191, 107.
[39] Raza G.; Amjad M.; Kaur I.; Wen D. Environ. Sci. Technol. 2016, 50, 8462.
[40] Volkov A. G.; Paula D. W.; Dreamer D. W. Bioelectrochem. Bioenerg. 1997, 42, 153.
[41] Tansel B.; Sager J.; Rector T.; Garland J.; Strayer R. F.; Levine L. F.; Roberts M.; Hummerick M.; Bauer J. Sep. Purif. Technol. 2006, 51, 40.
[42] Abdelmeguid A. E.; Aboelfetoh E. F.; Ebeid E. M. Chemosphere 2017, 181, 738.
[43] Tahir S. S.; Rauf N. Chemosphere 2006, 63, 1842.
[44] Hummers W. S.; Offeman R. E. J. Am. Chem. Soc. 1958, 80, 1339.
Outlines

/