Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols
Received date: 2019-07-18
Online published: 2019-09-26
The novel 3 dimension (3D) nanocomposite photocatalyst Eu-ZnO/MIL-53(Fe) was successfully prepared with in situ synthesis. Firstly the rare earth element Eu was doped into semiconductor ZnO and then Eu-ZnO was combined with MIL-53(Fe). The structure, morphology, optical and electrical properties of the nanocomposites were thoroughly characterized by X-ray diffraction (XRD), fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherms (SBET), photoluminescence spectra (PL) and electrochemical impedance (EIS) spectra and the like. The FT-IR and XRD results showed that the photocatalysts were successfully prepared and SEM results showed that morphology of the MIL-53(Fe) were all well remained after the preparing process. The photocatalytic experiment data, UV-Vis DRS spectra and PL spectra and the like results showed that the introduction of rare earth elements Eu could greatly improve the photocatalytic efficiency of MIL-53 (Fe), and promote the effective separation of photogenerated electron-hole, which further improved the catalytic activity. The results of electrochemical impedance spectra further supported the conclusion. By exploring the photocatalytic activity of Eu-ZnO/MIL-53(Fe) under visible light conditions, the photocatalyst showed excellent photocatalytic activity. Some derivatives of benzalcohol were more affected by electronic effects, the conversion of the derivative having an electron-withdrawing group was relatively high, and the conversion of the derivative having an electron-donating group was low. The possible mechanism of the photocatalytic reaction was explored via the active species capture experiment and Mott-schottky (M-S) curve test. The results showed that the photocatalytic selective oxidation of alcohols achieved with photogenerated holes (h+) and hydroxyl radicals (·OH). The photo stability and thermal stability of the photocatalyst was investigated by cyclic experiments and the structure characterization of the photocatalyst before and after the photoreaction. The results showed that the photocatalyst had outstanding light stability and thermal stability.
Key words: Eu-ZnO; MIL-53(Fe); visible light catalysis; oxidation of alcohol
Shuangyan Meng , Mingming Wang , Bolin Lü , Qunji Xue , Zhiwang Yang . Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols[J]. Acta Chimica Sinica, 2019 , 77(11) : 1184 -1193 . DOI: 10.6023/A19070268
[1] | James B. Chem. Soc. Rev. 2009, 38, 185 |
[2] | Wasielewski M. R. Chem. Rev. 1992, 92, 435 |
[3] | Bard A. J.; Fox M. A. Acc. Chem. Res. 1995, 28, 141 |
[4] | Ravelli D.; Dondi D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2009, 38, 1999 |
[5] | Gust D.; Moore T. A.; Moore A. L. Acc. Chem. Res. 2009, 42, 1890 |
[6] | Berardi S.; Drouet S.; Francas L.; Gimbert-Surinach C.; Guttentag M.; Richmond C.; Stoll T.; Llobet A. Chem. Soc. Rev. 2014, 43, 7501 |
[7] | Zeng L.; Guo X. Y.; He C.; Duan C. Y. ACS Catal. 2016, 6, 7935 |
[8] | Yaghi O. M.; Li G. M.; Li H. M. Nature 1995, 378, 703 |
[9] | Moulton B.; Zaworotko M. J. Chem. Rev. 2001, 101, 1629 |
[10] | Férey G.; Mellot-Draznieks C.; Serre C.; Millange F. Acc. Chem. Res. 2005, 38, 217 |
[11] | Hill R. J.; Long D. L.; Champness N. R.; Hubberstey P.; Schr der M. Acc. Chem. Res. 2005, 38, 335 |
[12] | Proch S.; Herrmannsd rfer J.; Kempe R.; Kern C.; Jess A.; Seyfarth L.; Senker J. Chem.-Eur. J. 2008, 14, 8204 |
[13] | López-Maya E.; Montoro C.; Colombo V.; Barea E.; Navarro J. A. R. Adv. Funct. Mater. 2014, 24, 6130 |
[14] | Meng S. Y.; Yang H. J.; Zhu N.; Yang J.; Yang R. R.; Yang Z. W. Acta Chim. Sinica 2019, 77, 461 |
[14] | 孟 双艳; 杨 红菊; 朱 楠; 杨 娇; 杨 瑞瑞; 杨 志旺 化学学报 2019, 77, 461 |
[15] | Liu R. X.; He X. Y.; Niu L. T.; Lü B. L.; Yu F.; Zhang Z.; Yang Z. W. Acta Chim. Sinica 2019, 77, 653 |
[15] | 刘 茹雪; 何 小燕; 牛 力同; 吕 柏霖; 余 菲; 张 哲; 杨 志旺 化学学报 2019, 77, 653 |
[16] | Zhao M.; Ou S.; Wu C. D. Acc. Chem. Res. 2014, 45, 1199 |
[17] | Wu P. Y.; Wang J.; Li Y. M.; He C.; Xie Z.; Duan C. Y. Adv. Funct. Mater. 2011, 21, 2788 |
[18] | Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W. Acta. Chim. Sinica 2019, 77, 153. |
[18] | 马亚丽, 刘茹雪, 孟双艳, 牛力同, 杨志旺, 雷自强, 化学学报, 2019, 77, 153. |
[19] | Horcajada P.; Gref R.; Baati T.; Allan P.; Maurin G.; Couvreur P.; Ferey G.; Morris R.; Serre C. Chem. Rev. 2012, 112, 1232 |
[20] | Sun D. R.; Li Z. H. Chin. J. Chem. 2017, 35, 135 |
[21] | Shen L. J.; Liang R. W.; Wu L. Chin. J. Catal. 2015, 36, 2071 |
[22] | Zhang W. Q.; Li Q. Y.; Yang X. Y.; Ma Z.; Wang H. H.; Wang X. J. Acta Chim. Sinica 2017, 75, 80 |
[22] | 张 文强; 李 秋艳; 杨 馨雨; 马 征; 王 欢欢; 王 晓军 化学学报 2017, 75, 80 |
[23] | Liang R. W.; Shen L. J.; Jing F. F.; Qin N.; Wu L. ACS Appl. Mater. Interfaces 2015, 7, 9507 |
[24] | Liang R. W.; Chen R.; Jing F. F.; Qin N.; Wu L. Dalton Trans. 2015, 44, 18227 |
[25] | Liang R. W.; Huang R.; Ying S. M.; Wang X. X.; Yan G. Y.; Wu L. Nano Res. 2017, 11, 1109 |
[26] | Liang R.; Jing F. F.; Shen L. J.; Qin N.; Wu L. Nano Res. 2015, 8, 3237 |
[27] | Jing F. F.; Liang R. W.; Xiong J. H.; Chen R.; Zhang S. Y.; Li Y. H.; Wu L. Appl. Catal. B:Environ. 2017, 206, 9 |
[28] | Liang R. W.; Jing F. F.; Yan G. Y.; Wu L. Appl. Catal. B:Environ. 2017, 218, 452 |
[29] | Liang R. W.; Shen L. J.; Jing F. F.; Wu W. M.; Qin N.; Lin R.; Wu L. Appl. Catal. B:Environ. 2015, 162, 245 |
[30] | Araya T.; Jia M.; Yang J.; Zhao P.; Cai K.; Ma W. H.; Huang Y. P. Appl. Catal. B:Environ. 2017, 203, 768 |
[31] | Liu Q. X.; Zeng C. M.; Ai L. H.; Hao Z.; Jiang J. Appl. Catal. B:Environ. 2018, 224, 38 |
[32] | Huang W. Y.; Liu N.; Zhang X. G.; Wu M. H.; Tang L. Appl. Surf. Sci. 2017, 425, 107 |
[33] | Yang Z. W.; Xu X. Q.; Liang X. X.; Lei C.; Wei Y. L.; He P. Q.; Lv B. L.; Ma H. C.; Lei Z. Q. Appl. Catal. B:Environ. 2016, 198, 112 |
[34] | Ernández-Carrilloa, M. A.; Torres-Ricárdeza, H. R.; García-Mendozaa, M. F.; Ramírez-Moralesa, E.; Rojas-Blancoa, L.; Díaz-Floresa, L. L.; Sepúlveda-Palaciosb, G. E.; Paraguay-Delgadoc, F.; Pérez-Hernándeza, G. Catal. Today 2018, doi: org/10.1016/j.cattod.2018.04.060. |
[35] | Meng J. C.; Chen Q.; Lu J. Q.; Liu H. ACS Appl. Mater. Interfaces 2019, 11, 550 |
[36] | Gao B. J.; Zhou J.; Wang H. L.; Zhang G. P.; He J. H.; Xu Q. F.; Li N. J.; Chen D. Y.; Li H.; Lu J. M. Chin. J. Catal. 2019, 37, 148 |
[37] | Lucovsky G.; Phillips J. C. Thin Solid Films 2005, 486, 200 |
[38] | Frindell K. L.; Bartl M. H.; Matthew R.; Bazan G. C.; Popitsch A.; Stucky G. D. J. Solid State Chem. 2003, 172, 81 |
[39] | Carreno N. V.; Fajardo H. V.; Maciel A. P.; Valentini A.; Pontes F. M.; Probst L. F. D.; Leite E. R.; Longo E. J. Mol. Catal. A:Chem. 2004, 207, 91 |
[40] | Wang D. K.; Huang R. K.; Liu W. J.; Sun D. R.; Li Z. H. ACS Catal. 2014, 4, 4254 |
[41] | Sin J. C.; Lam S. M.; Lee K. T.; Mohamed A. R. Ceram. Int. 2014, 40, 5431 |
[42] | Gao Y. W.; Li S. M.; Li Y. X.; Yao L. Y.; Zhang H. Appl. Catal. B:Environ. 2017, 202, 165 |
[43] | Jian X.; Liu X.; Yang H. M.; Li J. G.; Song X. L.; Dai H. Y.; Liang Z. H. Appl. Surf. Sci. 2016, 370, 514 |
[44] | Huang X.; Tan C. L.; Yin Z. Y.; Zhang H. Adv. Mater. 2014, 26, 2185 |
[45] | Yu J. G.; Yu X. X. Environ. Sci. Technol. 2008, 42, 4902 |
[46] | Zhang C. H.; Ai L. H.; Jiang J. Ind. Eng. Chem. Res. 2015, 54, 153 |
[47] | Liang R. W.; Jing F. F.; Shen L. J.; Qin N.; Wu L. J. Hazard. Mater. 2015, 287, 364 |
[48] | Khataee A. R.; Karimi A.; Darvishi R.; Soltani C.; Safarpour M.; Hanifehpour Y.; Joo S. W. Appl. Catal. A:Gen. 2014, 488, 160 |
[49] | Zhao F.; Sun H. L.; Gao S.; Su G. Mater. Chem. 2005, 15, 4209 |
[50] | Xu X. Q.; Liu R. X.; Cui Y.; Liang X.; Lei C.; Meng S. Y.; Ma Y. L.; Lei Z. Q.; Yang Z. W. Appl. Catal. B:Environ. 2017, 210, 484 |
[51] | Sun L. P.; Niu S. Y.; Jin J.; Yang G.; Ye L. Inorg. Chem. Commun. 2006, 9, 679 |
[52] | Jin X.; Ye L.; Wang H.; Su Y.; Xie H.; Zhong Z.; Zhang H. Appl. Catal. B:Environ. 2015, 165, 668 |
/
〈 |
|
〉 |