Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials
Received date: 2019-07-16
Online published: 2019-10-09
Supported by
the National Key Research and Development Program of China(2018YFB0104400);the Natural Science Foundation-the Joint Foundation of China(U1764255)
With the rapid development of electric cars and energy storage power stations, there is an increasing demand for lithium ion batteries with high energy density. Li- and Mn-rich (LMR) cathode materials with large specific capacity (>250 mAh·g-1) are supposed to accomplish lithium ion batteries with high energy density (>350 Wh·kg-1). The high capacity performance of LMR cathode materials are resulted from the lattice oxygen redox reaction induced by the electrochemical activation of the Li2MnO3 phase. However, the activation of the Li2MnO3 phase and oxygen redox reaction lead to lattice oxygen release and structure transformation, which cause some serious problems such as low initial columbic efficiency, poor rate capability, voltage and capacity degradation after subsequent cycles. The oxygen release and structure transformation always start from the surface, indicating that the surface stability is significant to LMR cathode materials. In this paper, surface modifications such as surface coating, surface doping and surface chemical treatment are reviewed and the mechanism of three surface modification methods for LMR cathode materials are discussed in further. Surface coating is one of the most widely surface modification methods, which can suppress the electrode/electrolyte side reaction and reduce the transition metal dissolution. The effect of surface coating on improving electrochemical performance of LMR cathode materials is always determined by the characteristic of coating layer materials including non-active coating layer, electrochemical active coating layer, Li+ conductive coating layer and electronic conductive coating layer. Surface doping has shown to be an effective method in suppressing oxygen release and structural transformation. Surface chemical treatment has resulted in reducing irreversible capacity loss by activating Li2MnO3 phase. On this basis, surface integrated strategies combined several surface modified methods are introduced and discussed in recent years. The surface intergrated strategies not only enhance the structural stability and suppress electrode/electrolyte surface-interface reaction, but also have an effective role on mitigating structure transformation and lattice oxygen release. Finally, we wish that our review would provide research directions for surface modified strategies of LMR cathode materials in future.
Zhao Li , Zhong Wang , Liqin Ban , Jiantao Wang , Shigang Lu . Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials[J]. Acta Chimica Sinica, 2019 , 77(11) : 1115 -1128 . DOI: 10.6023/A19070265
[1] | Goodenough J. B. Energy Storage Mater. 2015, 1, 158 |
[2] | Kalluri S.; Yoon M.; Jo M.; Park S.; Myeong S.; Kim J.; Dou S. X.; Guo Z.; Cho J. Adv. Energy Mater. 2017, 7, 1601507 |
[3] | Deng B.; Sun W.; Wang H.; Chen T.; Li X.; Qu M.; Peng G. Acta Chim. Sinica 2018, 76, 259 |
[3] | 邓 邦为; 孙 万琦; 王 昊; 陈 滔; 李 璇; 瞿 美臻; 彭 工厂 化学学报 2018, 76, 259 |
[4] | Zheng Z.; Wu Z.; Xiang W.; Guo X. Acta Chim. Sinica 2017, 75, 501 |
[4] | 郑 卓; 吴 振国; 向 伟; 郭 孝东 化学学报 2017, 75, 501 |
[5] | Hua W.; Wang Y.; Zhong Y.; Wang G.; Zhong B.; Fang B.; Guo X.; Liao S.; Wang H. Chin. J. Chem. 2015, 33, 261 |
[6] | Wen L.; Pilgun O.; Xien L.; Min-Joon L.; Woongrae C.; Sujong C.; Youngsik K.; Jaephil C. Angew. Chem. 2015, 54, 4440 |
[7] | Hou P.; Yin J.; Ding M.; Huang J.; Xu X. Small 2017, 13, 1701802 |
[8] | Manthiram A.; Knight J. C.; Myung S. T.; Oh S. M.; Sun Y. K. Adv. Energy Mater. 2016, 6, 1501010 |
[9] | Erickson E. M.; Schipper F.; Penki T. R.; Shin J. Y.; Erk C.; Chesneau F. F.; Markovsky B.; Aurbach D. J. Electrochem. Soc. 2017, 164, A6220 |
[10] | Kim J.; Lee H.; Cha H.; Yoon M.; Park M.; Cho J. Adv. Energy Mater. 2018, 8, 1702028 |
[11] | Numata K.; Sakaki C.; Yamanaka S. Chem. Lett. 1997, 1997, 725 |
[12] | Numata K.; Sakaki C.; Yamanaka S. Solid State Ionics 1999, 117, 257 |
[13] | Lu Z. H.; Macneil D. D.; Dahn J. R. Electrochem. Solid-State Lett. 2001, 7, A503 |
[14] | Johnson C. S.; Kim J. S.; Lefief C.; Li N.; Vaughey J. T.; Thackeray M. M. Electrochem. Commun. 2004, 6, 1085 |
[15] | Thackeray M. M.; Johnson C. S.; Vaughey J. T.; Li N.; Hackney S. A. J. Mater. Chem. 2005, 15, 2257 |
[16] | Thackeray M. M.; Kang S. H.; Johnson C. S.; Vaughey J. T.; Benedek R.; Hackney S. A. J. Mater. Chem. 2007, 17, 3112 |
[17] | Wang Z.; Yin Y.; Ren Y.; Wang Z.; Gao M.; Ma T.; Zhuang W.; Lu S.; Fan A.; Amine K. Nano Energy 2017, 31, 247 |
[18] | Nayak P. K.; Erickson E. M.; Schipper F.; Penki T. R.; Munichandraiah N.; Adelhelm P.; Sclar H.; Amalraj F.; Markovsky B.; Aurbach D. Adv. Energy Mater. 2018, 8, 1702397 |
[19] | Li M.; Lu J.; Chen Z.; Amine K. Adv. Mater. 2018, 30, 1800561 |
[20] | Zuo Y.; Li B.; Jiang N.; Chu W.; Zhang H.; Zou R.; Xia D. Adv. Mater. 2018, 30, 1707255 |
[21] | Zheng J.; Myeong S.; Cho W.; Yan P.; Xiao J.; Wang C.; Cho J.; Zhang J. G. Adv. Energy Mater. 2016, 7, 1601284 |
[22] | Assat G.; Tarascon J. -M. Nat. Energy 2018, 3, 373 |
[23] | Yang C.; Gong Z.; Zhao W.; Yang Y. Acta Chim. Sinica 2017, 75, 212 |
[23] | 杨 春; 龚 正良; 赵 文高; 杨 勇 化学学报 2017, 75, 212 |
[24] | Gauthier M.; Carney T. J.; Grimaud A.; Giordano L.; Pour N.; Chang H. H.; Fenning D. P.; Lux S. F.; Paschos O.; Bauer C. J. Phys. Chem. Lett. 2015, 6, 4653 |
[25] | Xu B.; Fell C. R.; Chi M.; Meng Y. S. Energy Environ. Sci. 2011, 4, 2223 |
[26] | Oh P.; Ko M.; Myeong S.; Kim Y.; Cho J. Adv. Energy Mater. 2014, 4, 1400631 |
[27] | Yan P.; Nie A.; Zheng J.; Zhou Y.; Lu D.; Zhang X.; Xu R.; Belharouak I.; Zu X.; Xiao J. Nano Lett. 2015, 15, 514 |
[28] | Croy J. R.; Balasubramanian M.; Gallagher K. G.; Burrell A. K. Acc. Chem. Res. 2015, 48, 2813 |
[29] | Kim J.-S.; Johnson C. S.; Vaughey J. T.; Thackeray M. M.; Hackney S. A.; Yoon W.; Grey C. P. Chem. Mater. 2004, 16, 1996 |
[30] | Kang S. H.; Kempgens P.; Greenbaum S.; Kropf A. J.; Amine K.; Thackeray M. M. J. Mater. Chem. 2007, 17, 2069 |
[31] | Jarvis K. A.; Deng Z.; Allard L. F.; Manthiram A.; Ferreira P. J. Chem. Mater. 2011, 23, 3614 |
[32] | Mccalla E.; Lowartz C. M.; Brown C. R.; Dahn J. R. Chem. Mater. 2013, 25, 912 |
[33] | Shunmugasundaram R.; Senthil Arumugam R.; Dahn J. R. Chem. Mater. 2015, 27, 757 |
[34] | Shunmugasundaram R.; Senthil Arumugam R.; Harris K. J.; Goward G. R.; Dahn J. R. Chem. Mater. 2016, 28, 55 |
[35] | Zheng J.; Xu P.; Gu M.; Xiao J.; Browning N. D.; Yan P.; Wang C.; Zhang J. -G. Chem. Mater. 2015, 27, 1381 |
[36] | Gu M.; Belharouak I.; Zheng J.; Wu H.; Xiao J.; Genc A.; Amine K.; Thevuthasan S.; Baer D. R.; Zhang J. -G. ACS Nano 2013, 7, 760 |
[37] | Hong J.; Seo D. H.; Kim S. W.; Gwon H.; Oh S. T.; Kang K. J. Mater. Chem. 2010, 20, 10179 |
[38] | Xiao B.; Sun X. Adv. Energy Mater. 2018, 8, 1802057 |
[39] | Hu E.; Yu X.; Lin R.; Bi X.; Lu J.; Bak S.; Nam K.-W.; Xin H. L.; Jaye C.; Fischer D. A.; Amine K.; Yang X. -Q. Nat. Energy 2018, 3, 690 |
[40] | Dai K.; Wu J.; Zhuo Z.; Li Q.; Sallis S.; Mao J.; Ai G.; Sun C.; Li Z.; Gent W. E.; Chueh W. C.; Chuang Y.-d.; Zeng R.; Shen Z.-x.; Pan F.; Yan S.; Piper L. F. J.; Hussain Z.; Liu G.; Yang W. Joule 2019, 3, 518 |
[41] | Zheng J.; Myeong S.; Cho W.; Yan P.; Xiao J.; Wang C.; Cho J.; Zhang J. G. Adv. Energy Mater. 2017, 7, 1601284 |
[42] | Shi S. J.; Tu J. P.; Tang Y. Y.; Liu X. Y.; Zhang Y. Q.; Wang X. L.; Gu C. D. Electrochim. Acta 2013, 88, 671 |
[43] | Han E.; Li Y.; Zhu L.; Zhao L. Solid State Ionics 2014, 255, 113 |
[44] | Yan P.; Zheng J.; Zhang X.; Xu R.; Amine K.; Xiao J.; Zhang J.-G.; Wang C. -M. Chem. Mater. 2016, 28, 857 |
[45] | Kobayashi G.; Irii Y.; Matsumoto F.; Ito A.; Ohsawa Y.; Yamamoto S.; Cui Y.; Son J. Y.; Sato Y. J. Power Sources 2016, 303, 250 |
[46] | Lee G.-H.; Choi I. H.; Oh M. Y.; Park S. H.; Nahm K. S.; Aravindan V.; Lee Y. -S. Electrochim. Acta 2016, 194, 454 |
[47] | Xie Y.; Chen S.; Lin Z.; Yang W.; Zou H.; Sun R. W. -Y. Electrochem. Commun. 2019, 99, 65 |
[48] | Mu K.; Cao Y.; Hu G.; Du K.; Yang H.; Gan Z.; Peng Z. Electrochim. Acta 2018, 273, 88 |
[49] | Chen C.; Geng T.; Du C.; Zuo P.; Cheng X.; Ma Y.; Yin G. J. Power Sources 2016, 331, 91 |
[50] | Rastgoo-Deylami M.; Javanbakht M.; Omidvar H. Solid State Ionics 2019, 331, 74 |
[51] | Zheng J. M.; Zhang Z. R.; Wu X. B.; Dong Z. X.; Zhu Z.; Yang Y. J. Electrochem. Soc. 2008, 155, A775 |
[52] | Zheng J.; Gu M.; Xiao J.; Polzin B. J.; Yan P.; Chen X.; Wang C.; Zhang J. -G. Chem. Mater. 2014, 26, 6320 |
[53] | Pang S.; Wang Y.; Chen T.; Shen X.; Xi X.; Liao D. Ceram. Int. 2016, 42, 5397 |
[54] | Hu G.; Qi X.; Hu K.; Lai X.; Zhang X.; Du K.; Peng Z.; Cao Y. Electrochim. Acta 2018, 265, 391 |
[55] | Sun S.; Wan N.; Wu Q.; Zhang X.; Pan D.; Bai Y.; Lu X. Solid State Ionics 2015, 278, 85 |
[56] | Liu X.; Huang T.; Yu A. Electrochim. Acta 2015, 163, 82 |
[57] | Liu H.; Qian D.; Verde M. G.; Zhang M.; Baggetto L.; An K.; Chen Y.; Carroll K. J.; Lau D.; Chi M.; Veith G. M.; Meng Y. S. ACS Appl. Mater. Interfaces 2015, 7, 19189 |
[58] | Lu C.; Wu H.; Zhang Y.; Liu H.; Chen B.; Wu N.; Wang S. J. Power Sources 2014, 267, 682 |
[59] | Wu Y.; Murugan A. V.; Manthiram A. J. Electrochem. Soc. 2008, 155, A635 |
[60] | Ma J.; Li B.; An L.; Wei H.; Wang X.; Yu P.; Xia D. J. Power Sources 2015, 277, 393 |
[61] | Xiao B.; Wang B.; Liu J.; Kaliyappan K.; Sun Q.; Liu Y.; Dadheech G.; Balogh M. P.; Yang L.; Sham T. -K. Nano Energy 2017, 34, 120 |
[62] | Xie Q.; Zhao C.; Hu Z.; Huang Q.; Chen C.; Liu K. RSC Adv. 2015, 5, 77324 |
[63] | Chen J.; Li Z.; Xiang H.; Wu W.; Cheng S.; Zhang L.; Wang Q.; Wu Y. RSC Adv. 2015, 5, 3031 |
[64] | Wu F.; Li N.; Su Y.; Lu H.; Zhang L.; An R.; Wang Z.; Bao L.; Chen S. J. Mater. Chem. 2012, 22, 1489 |
[65] | Liu Y.; Liu S.; Wang Y.; Chen L.; Chen X. J. Power Sources 2013, 222, 455 |
[66] | Guo S.; Yu H.; Liu P.; Liu X.; Li D.; Chen M.; Ishida M.; Zhou H. J. Mater. Chem. A 2014, 2, 4422 |
[67] | Jin Y.; Xu Y.; Sun X.; Xiong L.; Mao S. Appl. Surf. Sci. 2016, 384, 125 |
[68] | He H.; Zan L.; Zhang Y. J. Alloys Compd. 2016, 680, 95 |
[69] | Jin Y.; Xu Y.; Xiong L.; Sun X.; Li L.; Li L. Solid State Ionics 2017, 310, 62 |
[70] | Li Y.; Huang H.; Yu J.; Xia Y.; Liang C.; Gan Y.; Zhang J.; Zhang W. J. Alloys Compd. 2019, 783, 349 |
[71] | Wang Z.; Liu E.; He C.; Shi C.; Li J.; Zhao N. J. Power Sources 2013, 236, 25 |
[72] | Wang Z.; Lu H.-Q.; Yin Y.-P.; Sun X.-Y.; Bai X.-T.; Shen X.-L.; Zhuang W.-D.; Lu S. -G. Rare Metals 2017, 36, 899 |
[73] | Zhao T.; Li L.; Chen R.; Wu H.; Zhang X.; Chen S.; Xie M.; Wu F.; Lu J.; Amine K. Nano Energy 2015, 15, 164 |
[74] | Bian X.; Fu Q.; Bie X.; Yang P.; Qiu H.; Pang Q.; Chen G.; Du F.; Wei Y. Electrochim. Acta 2015, 174, 875 |
[75] | Chen D.; Zheng F.; Li L.; Chen M.; Zhong X.; Li W.; Lu L. J. Power Sources 2017, 341, 147 |
[76] | Lee Y.; Lee J.; Lee K. Y.; Mun J.; Lee J. K.; Choi W. J. Power Sources 2016, 315, 284 |
[77] | Zhou L.; Yin Z.; Tian H.; Ding Z.; Li X.; Wang Z.; Guo H. Appl. Surf. Sci. 2018, 456, 763 |
[78] | Martha S. K.; Nanda J.; Kim Y.; Unocic R. R.; Pannala S.; Dudney N. J. J. Mater. Chem. A 2013, 1, 5587 |
[79] | Kang S. H.; Thackeray M. M. Electrochem. Commun. 2009, 11, 748 |
[80] | Qiao Q. Q.; Zhang H. Z.; Li G. R.; Ye S. H.; Wang C. W.; Gao X. P. J. Mater. Chem. A 2013, 1, 5262 |
[81] | Zheng F.; Yang C.; Xiong X.; Xiong J.; Hu R.; Chen Y.; Liu M. Angew. Chem. Int. Ed. 2015, 54, 13058 |
[82] | Chen Y.; Xie K.; Zheng C.; Ma Z.; Chen Z. ACS Appl. Mater. Interfaces 2014, 6, 16888 |
[83] | Li H.; Zhou H. Chem. Commun. 2012, 48, 1201 |
[84] | Xia Q.; Zhao X.; Xu M.; Ding Z.; Liu J.; Chen L.; Ivey D. G.; Wei W. J. Mater. Chem. A 2015, 3, 3995 |
[85] | Pang S.; Xu K.; Wang Y.; Shen X.; Wang W.; Su Y.; Zhu M.; Xi X. J. Power Sources 2017, 365, 68 |
[86] | Park K.; Kim J.; Park J.-H.; Hwang Y.; Han D. J. Power Sources 2018, 408, 105 |
[87] | Ma Y.; Liu P.; Xie Q.; Zhang G.; Zheng H.; Cai Y.; Li Z.; Wang L.; Zhu Z.-Z.; Mai L. Nano Energy 2019, 59, 184 |
[88] | Wu F.; Li N.; Su Y.; Shou H.; Bao L.; Yang W.; Zhang L.; An R.; Chen S. Adv. Mater. 2013, 25, 3722 |
[89] | Wang L.; Zhao D.; Liu X.; Yu P.; Fu H. Acta Chim. Sinica 2017, 75, 231 |
[89] | 王 蕾; 赵 东东; 刘 旭; 于 鹏; 付 宏刚 化学学报 2017, 75, 231 |
[90] | Li Z.; Wang Z.; Li Q.; Ban L.; Zhuang W.; Lu S. Chinese J. Inorg. Chem. 2019, 35, 1561 |
[90] | 李 钊; 王 忠; 李 强; 班 丽卿; 庄 卫东; 卢 世刚 无机化学学报 2019, 35, 1561 |
[91] | Song B.; Lai M. O.; Liu Z.; Liu H.; Lu L. J. Mater. Chem. A 2013, 1, 9954 |
[92] | Zhang J.; Lu Q.; Fang J.; Wang J.; Yang J.; Nuli Y. ACS Appl. Mater. Interfaces 2014, 6, 17965 |
[93] | Wu C.; Fang X.; Guo X.; Mao Y.; Ma J.; Zhao C.; Wang Z.; Chen L. J. Power Sources 2013, 231, 44 |
[94] | Wang D.; Wang X.; Yang X.; Yu R.; Ge L.; Shu H. J. Power Sources 2015, 293, 89 |
[95] | Wu F.; Liu J.; Li L.; Zhang X.; Luo R.; Ye Y.; Chen R. ACS Appl. Mater. Interfaces 2016, 8, 23095 |
[96] | Kim I. T.; Knight J. C.; Celio H.; Manthiram A. J. Mater. Chem. A 2014, 2, 8696 |
[97] | Chen D.; Tu W.; Chen M.; Hong P.; Zhong X.; Zhu Y.; Yu Q.; Li W. Electrochim. Acta 2016, 193, 45 |
[98] | Liu H.; Chen C.; Du C.; He X.; Yin G.; Song B.; Zuo P.; Cheng X.; Ma Y.; Gao Y. J. Mater. Chem. A 2015, 3, 2634 |
[99] | Nayak P. K.; Grinblat J.; Levi M.; Levi E.; Kim S.; Choi J. W.; Aurbach D. Adv. Energy Mater. 2016, 6, 1502398 |
[100] | Su X.; Wang X.; Chen H.; Yu Z.; Qi J.; Tao S.; Chu W.; Song L. Chin. J. Chem. 2017, 35, 1853 |
[101] | Qing R. P.; Shi J. L.; Xiao D. D.; Zhang X. D.; Yin Y. X.; Zhai Y. B.; Gu L.; Guo Y. G. Adv. Energy Mater. 2016, 6, 1501914 |
[102] | Liu S.; Liu Z.; Shen X.; Li W.; Gao Y.; Banis M. N.; Li M.; Chen K.; Zhu L.; Yu R. Adv. Energy Mater. 2018, 8, 1802105 |
[103] | Zhang X.; Cao S.; Yu R.; Li C.; Huang Y.; Wang Y.; Wang X.; Gairong C. ACS Appl. Energy Mater. 2019, 2, 1563 |
[104] | Huang J.; Liu H.; Hu T.; Meng Y. S.; Luo J. J. Power Sources 2018, 375, 21 |
[105] | Zhao Y.; Liu J.; Wang S.; Ji R.; Xia Q.; Ding Z.; Wei W.; Liu Y.; Wang P.; Ivey D. G. Adv. Funct. Mater. 2016, 26, 4760 |
[106] | Shang H.; Ning F.; Li B.; Zuo Y.; Lu S.; Xia D. ACS Appl. Mater. Interfaces 2018, 10, 21349 |
[107] | Kang S. H.; Johnson C. S.; Vaughey J. T.; Amine K.; Thackeray M. M. J. Electrochem. Soc. 2006 153 |
[108] | Paik Y.; Grey C. P.; Johnson C. S.; Kim J.-S.; Thackeray M. M. Chem. Mater. 2002, 14, 5109 |
[109] | Benedek R.; Thackeray M. M.; Van De Walle A. Chem. Mater. 2008, 20, 5485 |
[110] | Denis Y.; Yanagida K.; Nakamura H. J. Electrochem. Soc. 2010, 157, A1177 |
[111] | Oh P.; Myeong S.; Cho W.; Lee M.-J.; Ko M.; Jeong H. Y.; Cho J. Nano Lett. 2014, 14, 5965 |
[112] | Zhang J.; Lei Z.; Wang J.; Nuli Y.; Yang J. ACS Appl. Mater. Interfaces 2015, 7, 15821 |
[113] | Erickson E. M.; Sclar H.; Schipper F.; Liu J.; Tian R.; Ghanty C.; Burstein L.; Leifer N.; Grinblat J.; Talianker M. Adv. Energy Mater. 2017, 7, 1700708 |
[114] | Qiu B.; Zhang M.; Wu L.; Wang J.; Xia Y.; Qian D.; Liu H.; Hy S.; Chen Y.; An K.; Zhu Y.; Liu Z.; Meng Y. S. Nat. Commun. 2016, 7, 12108 |
[115] | Danna Q.; Bo X.; Miaofang C.; Shirley M. Y. Phys. Chem. Chem. Phys. 2014, 16, 14665 |
[116] | James C.; Wu Y.; Sheldon B. W.; Qi Y. Solid State Ionics 2016, 289, 87 |
[117] | Huang Z.; Xiong T.; Lin X.; Tian M.; Zeng W.; He J.; Shi M.; Li J.; Zhang G.; Mai L. J. Power Sources 2019, 432, 8 |
[118] | Liu W.; Oh P.; Liu X.; Myeong S.; Cho W.; Cho J. Adv. Energy Mater. 2015, 5, 1500274 |
[119] | Zhang X. D.; Shi J. L.; Liang J. Y.; Yin Y. X.; Zhang J. N.; Yu X. Q.; Guo Y. G. Adv. Mater. 2018, 30, 1801751 |
[120] | Cui H.; Li H.; Liu J.; Zhang Y.; Cheng F.; Chen J. Inorg. Chem. Front. 2019, 6, 1694 |
[121] | Guo H.; Jia K.; Han S.; Zhao H.; Qiu B.; Xia Y.; Liu Z. Adv. Mater. Interfaces 2018, 5, 1701465 |
[122] | Li Q.; Zhou D.; Zhang L.; Ning D.; Chen Z.; Xu Z.; Gao R.; Liu X.; Xie D.; Schumacher G. Adv. Funct. Mater. 2019, 29, 1806706 |
/
〈 |
|
〉 |