Review

Glycan Analysis in Cellular Secretion

  • Xiong Yingying ,
  • Chen Yunlong ,
  • Ju Huangxian
Expand
  • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023

Received date: 2019-08-10

  Online published: 2019-10-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741).

Abstract

Glycans are important components of mammalian cells, which exists extensively in eukaryocytes. Glycans are mainly consisted of monosaccharides, oligosaccharides and polysaccharides. They are connected to proteins or lipids through glycosylation, which constitute glycoconjugates. Glycosylation is one of the most important post-modifications of proteins, which mediate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, pathogen interaction, and intracellular signaling events. Because of the complex marshalling sequences, diversiform connection types and multiple branch structures, glycans are endowed with various structures. The diversity of glycan structure brings glycoconjugates with abundant information of cellular function. Among all the factors, human diseases act as an important ingredient which can induce unnatural glycosylation process. Glycoconjugates have been chosen as an efficient biomarker in the area of disease surveillance and targeted drug therapy. Thus, analysis of secreted glycans is of great importance for monitoring the states of cells or diseases in clinical diagnosis and treatment. Based on recent research of extracellular glycans, this review introduces the types of glycans in cellular secretion and their biological functions or significances, summarizes the identification or detection techniques of the secreted glycans, including lectin identifications, chemical covalent identifications and glycan metabolic marker techniques. Detection technologies of cell secretory glycan have been emphatically introduced in this review, which mainly contain spectrophotometry techniques, chromatography techniques, mass-spectrography techniques, fluorescence methods, electrochemical processes, enzyme linked immunosorbent assay techniques and western blot methods. After summarizing the progresses in this field during the past few decades, we outlook the future development of the analysis of cell secretory glycans. As far as we concern, in situ identification and quantitative detection will be the most challenging but meaningful topic of this field. We hope this review can be provided as a useful guidance for the investigating of glycosylation or glycan-related biological processes.

Cite this article

Xiong Yingying , Chen Yunlong , Ju Huangxian . Glycan Analysis in Cellular Secretion[J]. Acta Chimica Sinica, 2019 , 77(12) : 1221 -1229 . DOI: 10.6023/A19080299

References

[1] Xiao, H. P.; Suttapitugsakul, S.; Sun, F. X.; Wu, R. H. Acc. Chem. Res. 2018, 51, 1796.
[2] Zhang, L.-X.; Du, X.-F.; Zeng, Y. Acta Chim. Sinica 2016, 74, 149(in Chinese). (张丽霞, 杜秀芳, 曾盈, 化学学报, 2016, 74, 149.)
[3] Krishnamoorthy, L.; Mahal, L. K. ACS Chem. Biol. 2009, 4, 715.
[4] Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540.
[5] Brockhausen, I. BBA-Gen. Subjects 1999, 1473, 67.
[6] Clerc, F.; Reiding, K. R.; Jansen, B. C.; Kammeijer, G. S. M.; Bondt, A.; Wuhrer, M. Glycoconjugate J. 2016, 33, 309.
[7] Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.
[8] Fuster, M. M.; Esko, J. D. Nat. Rev. Cancer 2005, 5, 526.
[9] Rich, J. R.; Withers, S. G. Nat. Chem. Biol. 2009, 5, 206.
[10] Dennis, J. W.; Nabi, I. R.; Demetriou, M. Cell 2009, 139, 1229.
[11] Pinho, S. S.; Figueiredo, J.; Cabral, J.; Carvalho, S.; Dourado, J.; Magalhaes, A.; Gartner, F.; Mendonca, A. M.; Isaji, T.; Cu, J. G.; Carneiro, F.; Seruca, R.; Taniguchi, N.; Reis, C. A. BBA-Gen. Subjects 2013, 1830, 2690.
[12] Zhao, Y. Y.; Sato, Y.; Isaji, T.; Fukuda, T.; Matsumoto, A.; Miyoshi, E.; Gu, J. G.; Taniguchi, N. FEBS J. 2008, 275, 1939.
[13] Takeuchi, H.; Haltiwanger, R. S. Biochem. Biophys. Res. Commun. 2014, 453, 235.
[14] Boscher, C.; Dennis, J. W.; Nabi, I. R. Curr. Opin. Cell Biol. 2011, 23, 383.
[15] Ju, T. Z.; Otto, V. I.; Cummings, R. D. Angew. Chem., Int. Ed. 2011, 50, 1770.
[16] Gilgunn, S.; Conroy, P. J.; Saldova, R.; Rudd, P. M.; O'Kennedy, R. J. Nat. Rev. Urol. 2013, 10, 99.
[17] Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855.
[18] Kailemia, M. J.; Park, D.; Lebrilla, C. B. Anal. Bioanal. Chem. 2017, 409, 395.
[19] Adamczyk, B.; Tharmalingam, T.; Rudd, P. M. BBA-Gen. Subjects 2012, 1820, 1347.
[20] Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Adv. Drug Del. Rev. 2016, 97, 4.
[21] Muiznieks, L.; Keeley, F. W. Biochem. Cell Biol. 2010, 88, 392.
[22] George, E. L.; Georgeslabouesse, E. N.; Patelking, R. S.; Rayburn, H.; Hynes, R. O. Development 1993, 119, 1079.
[23] Aumailley, M.; Bruckner-Tuderman, L.; Carter, W. G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J. C. R.; Kleinman, H. K.; Marinkovich, M. P.; Martin, G. R.; Mayer, U.; Meneguzzi, G.; Miner, J. H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J. R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L. M.; Talts, J. F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U. M.; Yamada, Y.; Yurchenco, P. D. Matrix Biol. 2005, 24, 326.
[24] Feng, Y. M.; Guo, Y. N.; Li, Y. R.; Tao, J.; Ding, L.; Wu, J.; Ju, H. X. Anal. Chim. Acta 2018, 1039, 108.
[25] Kim, S. H.; Turnbull, J.; Guimond, S. J. Endocrinol. 2011, 209, 139.
[26] Bonnans, C.; Chou, J.; Werb, Z. Nat. Rev. Mol. Cell Biol. 2014, 15, 786.
[27] Varki, A. Trends Mol. Med. 2008, 14, 351.
[28] Wu, J.; Xie, X. L.; Nie, S.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2013, 12, 3342.
[29] Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.
[30] Ye, B.; Skates, S.; Mok, S. C.; Horick, N. K.; Rosenberg, H. F.; Vitonis, A.; Edwards, D.; Sluss, P.; Han, W. K.; Berkowitz, R. S.; Cramer, D. W. Clin. Cancer. Res. 2006, 12, 432.
[31] Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R. Nat. Biotechnol. 2003, 21, 660.
[32] Vajaria, B. N.; Patel, K. R.; Begum, R.; Shah, F. D.; Patel, J. B.; Shukla, S. N.; Patel, P. S. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 764.
[33] Theocharis, A. D.; Gialeli, C.; Bouris, P.; Giannopoulou, E.; Skandalis, S. S.; Aletras, A. J.; Iozzo, R. V.; Karamanos, N. K. FEBS J. 2014, 281, 5023.
[34] Iozzo, R. V.; Sanderson, R. D. J. Cell. Mol. Med. 2011, 15, 1013.
[35] Chandler, E. M.; Seo, B. R.; Califano, J. P.; Eguiluz, R. C. A.; Lee, J. S.; Yoon, C. J.; Tims, D. T.; Wang, J. X.; Cheng, L.; Mohanan, S.; Buckley, M. R.; Cohen, I.; Nikitin, A. Y.; Williams, R. M.; Gourdon, D.; Reinhart-King, C. A.; Fischbach, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9786.
[36] Durbeej, M. Cell Tissue Res. 2010, 339, 259.
[37] Hallmann, R.; Horn, N.; Selg, M.; Wendler, O.; Pausch, F.; Sorokin, L. M. Physiol. Rev. 2005, 85, 979.
[38] Arcinas, A.; Yen, T. Y.; Kebebew, E.; Macher, B. A. J. Proteome Res. 2009, 8, 3958.
[39] Schultz, M. J.; Swindall, A. F.; Bellis, S. L. Cancer Metastasis Rev. 2012, 31, 501.
[40] Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
[41] Hu, Y. M.; Borges, C. R. Analyst 2017, 142, 2748.
[42] Reis, C. A.; Osorio, H.; Silva, L.; Gomes, C.; David, L. J. Clin. Pathol. 2010, 63, 322.
[43] Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.
[44] Liu, Y. S.; He, J. T.; Li, C.; Benitez, R.; Fu, S.; Marrero, J.; Lubman, D. M. J. Proteome Res. 2010, 9, 798.
[45] Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207.
[46] Han, E.; Ding, L.; Qian, R. C.; Bao, L.; Ju, H. X. Anal. Chem. 2012, 84, 1452.
[47] Li, D. J.; Chen, Y.; Liu, Z. Chem. Soc. Rev. 2015, 44, 8097.
[48] Liu, L.-T.; Zhang, Y.; Jiao, J.; Yang, P.-Y.; Lu, H.-J. Acta Chim. Sinica 2013, 71, 535(in Chinese). (刘丽婷, 张莹, 焦竞, 杨芃原, 陆豪杰, 化学学报, 2013, 71, 535.)
[49] Liu, Z.; He, H. Acc. Chem. Res. 2017, 50, 2185.
[50] Qiu, J.; Zhang, Y.; Lu, H.-J.; Yang, P.-Y. Acta Chim. Sinica 2011, 69, 2123(in Chinese). (仇娟, 张莹, 陆豪杰, 杨芃原, 化学学报, 2011, 69, 2123.)
[51] Ma, Y. Y.; Li, X. L.; Li, W.; Liu, Z. ACS Appl. Mater. Interfaces 2018, 10, 40918.
[52] Wang, J.; Chen, P. Acta Chim. Sinica 2017, 75, 1173(in Chinese). (王杰, 陈鹏, 化学学报, 2017, 75, 1173.)
[53] Palaniappan, K. K.; Bertozzi, C. R. Chem. Rev. 2016, 116, 14277.
[54] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
[55] Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
[56] Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS Chem. Biol. 2006, 1, 644.
[57] Ning, X. H.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem., Int. Ed. 2008, 47, 2253.
[58] Lee, T. S.; Kim, Y.; Zhang, W. Q.; Song, I. H.; Tung, C. H. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 1091.
[59] Shah, M. H.; Telang, S. D.; Shah, P. M.; Patel, P. S. Glycoconjugate J. 2008, 25, 279.
[60] Sawhney, H.; Kumar, C. A. Cancer Biomark. 2011, 10, 43.
[61] Rajpura, K. B.; Patel, P. S.; Chawda, J. G.; Shah, R. M. J. Oral Pathol. Med. 2005, 34, 263.
[62] Krishnan, K.; Balasundaram, S. J. Clin. Diagn. Res. 2017, 11, ZC25.
[63] Wongkham, S.; Boonla, C.; Kongkham, S.; Wongkham, C.; Bhudhisawasdi, V.; Sripa, B. Clin. Biochem. 2001, 34, 537.
[64] Patel, P. S.; Rawal, G. N.; Balar, D. B. Gynecol. Oncol. 1993, 50, 294.
[65] Vuckovic, F.; Theodoratou, E.; Thaci, K.; Timofeeva, M.; Vojta, A.; Stambuk, J.; Pucic-Bakovic, M.; Rudd, P. M.; Derek, L.; Servis, D.; Wennerstrom, A.; Farrington, S. M.; Perola, M.; Aulchenko, Y.; Dunlop, M. G.; Campbell, H.; Lauc, G. Clin. Cancer. Res. 2016, 22, 3078.
[66] Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.
[67] Kontro, H.; Joenvaara, S.; Haglund, C.; Renkonen, R. Proteomics 2014, 14, 1713.
[68] Rohrer, J. S. Anal. Biochem. 2000, 283, 3.
[69] Raju, T. S. Curr. Opin. Immunol. 2008, 20, 471.
[70] Irani, V.; Guy, A. J.; Andrew, D.; Beeson, J. G.; Ramsland, P. A.; Richards, J. S. Mol. Immunol. 2015, 67, 171.
[71] Selman, M. H. J.; Niks, E. H.; Titulaer, M. J.; Verschuuren, J.; Wuhrer, M.; Deelder, A. M. J. Proteome Res. 2011, 10, 143.
[72] Fokkink, W. J. R.; Selman, M. H. J.; Dortland, J. R.; Durmus, B.; Kuitwaard, K.; Huizinga, R.; van Rijs, W.; Tio-Gillen, A. P.; van Doorn, P. A.; Deelder, A. M.; Wuhrer, M.; Jacobs, B. C. J. Proteome Res. 2014, 13, 1722.
[73] Zhang, D.; Chen, B. C.; Wang, Y. M.; Xia, P.; He, C. Y.; Liu, Y. J.; Zhang, R. Q.; Zhang, M.; Li, Z. L. Sci. Rep. 2016, 6, 10.
[74] Tajiri, M.; Ohyama, C.; Wada, Y. Glycobiology 2008, 18, 2.
[75] Shi, Y.; Xu, X.; Fang, M.; Zhang, M.; Li, Y.; Gillespie, B.; Yorke, S.; Yang, N.; McKew, J. C.; Gahl, W. A.; Huizing, M.; Carrillo-Carrasco, N.; Wang, A. Q. J. Chromatogr. B 2015, 1000, 105.
[76] Priego-Capote, F.; Orozco-Solano, M. I.; Calderon-Santiago, M.; de Castro, M. D. L. J. Chromatogr. A 2014, 1346, 88.
[77] Kodar, K.; Stadlmann, J.; Klaamas, K.; Sergeyev, B.; Kurtenkov, O. Glycoconjugate J. 2012, 29, 57.
[78] Balmana, M.; Sarrats, A.; Llop, E.; Barrabes, S.; Saldova, R.; Ferri, M. J.; Figueras, J.; Fort, E.; de Llorens, R.; Rudd, P. M.; Peracaula, R. Clin. Chim. Acta 2015, 442, 56.
[79] Hu, Z.-Y.; Sun, Z.; Zhang, Y.; Wu, R.-A.; Zou, H.-F. Acta Chim. Sinica 2012, 70, 2059(in Chinese). (胡争艳, 孙珍, 张轶, 吴仁安, 邹汉法, 化学学报, 2012, 70, 2059.)
[80] Xiong, Y.; Chen, Y.; Ding, L.; Liu, X.; Ju, H. Analyst 2019, 144, 4545.
[81] Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Anal. Chim. Acta 2016, 934, 72.
[82] Wu, J.; Xie, X. L.; Liu, Y. S.; He, J. T.; Benitez, R.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2012, 11, 4541.
[83] Yang, W. H.; Aziz, P. V.; Heithoff, D. M.; Mahan, M. J.; Smith, J. W.; Marth, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 13657.
Outlines

/