Article

Self-Assembly of Cyclic Dipeptides and Their Fluorescent Properties

  • Yang Jingge ,
  • Li Yang ,
  • Wang Xiaoai ,
  • Wang Dong ,
  • Sun Yawei ,
  • Wang Jiqian ,
  • Xu Hai
Expand
  • Center for Bioengineering & Biotechnology, College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580

Received date: 2019-09-07

  Online published: 2019-10-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21573287, 21673293, U1832108).

Abstract

Cyclic dipeptide (CDP) is a kind of the smallest cyclic peptide with two amino acids cyclization through amide bonds. The two amide bonds with four hydrogen bonding sites give CDPs a high self-assembly propensity, mainly driven by the hydrogen bonding interactions. In this paper, we have designed four CDPs, c-SF, c-SY, c-SH and c-DF, and studied their self-assembly performance in aqueous solution with circular dichroism spectroscopy (CD) and atomic force microscopy (AFM), including the effects of pH and zinc ion coordination on self-assembly. The fluorescence properties of CDP self-assemblies have also been studied. CD results showed that c-SF, c-SY and c-DF adopted a β-sheet conformation, while c-SH was random coil secondary structure at the concentration of 2.0 mmol/L and pH 5.0. AFM results showed that c-SF, c-SY and c-DF could form nanofibers with different diameters ranged from 1.0 to 3.0 nm. In addition, c-SY self-assembled hierarchically over time. Not only the nanofiber diameter gradually increased, but also the nanofibers entangled into 3D networks. Although c-SH did not self-assemble at the concentration of 3.0 mmol/L and pH 7.0, it could form monolayers with the induction of zinc ion at pH 9.0. The self-assemblies of each CDP had different multiple fluorescent emission peaks with excitation of different wavelengths. Especially, c-SF emitted green fluorescent light under UV light of 365 nm. The fluorescent emission intensity of CDPs was much stronger than their corresponding linear dipeptides. It was assumed that the diketopiperazine structure contributed to the fluorescence enhancement. Moreover, the fluorescent emission intensity of CDP self-assemblies was much higher than that of their free molecules, which meant that the ordered aggregation made a significant contribution to the fluorescent properties. Both the coordination of zinc ions with the imidazole groups on histidine and the oxidation of phenolic hydroxyl groups in tyrosine could enhance the fluorescent emission intensity of CDPs. It was assumed that CDP molecules stacked one by one to form nanofibers during self-assembly. The diketopiperazine ring of CDPs and its self-assembly endowed CDPs with special fluorescent properties.

Cite this article

Yang Jingge , Li Yang , Wang Xiaoai , Wang Dong , Sun Yawei , Wang Jiqian , Xu Hai . Self-Assembly of Cyclic Dipeptides and Their Fluorescent Properties[J]. Acta Chimica Sinica, 2019 , 77(12) : 1279 -1286 . DOI: 10.6023/A19090331

References

[1] Wang, J.; Zou, Q.-L.; Yan, X.-H. Acta Chim. Sinica 2017, 75, 933(in Chinese). (王娟, 邹千里, 闫学海, 化学学报, 2017, 75, 933.)
[2] Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.
[3] Wang, J.-X.; Qin, S.-Y.; Cai, T.-T.; Zhang, X.-Z.; Zhuo, R.-X. Chem. J. Chin. Univ. 2014, 36, 201(in Chinese). (王建勋, 秦四勇, 蔡腾腾, 张先正, 卓仁禧, 高等学校化学学报, 2014, 36, 201.)
[4] Han, S.; Cao, S.; Wang, Y.; Wang, J.; Xia, D.; Xu, H.; Zhao, X.; Lu, J. Chem.-Eur. J. 2011, 17, 13095.
[5] Li, Q.; Jia, Y.; Li, J.-B. Acta Chim. Sinica 2019, 77, 1173(in Chinese). (李琦, 贾怡, 李峻柏, 化学学报, 2019, 77, 1173.)
[6] MaassenVanDenBrink, A.; Terwindt, G. M.; van den Maagdenberg, A M. J. M. Genome Med. 2018, 10, 10.
[7] Inaba, H.; Matsuura, K. Chem. Rec. 2019, 19, 843.
[8] Apter, B.; Lapshina, N.; Handelman, A.; Rosenman, G. J. Pept. Sci. 2019, 25, 3164.
[9] Yang, W.-T.; Guo, W.-S.; Zhang, B.-B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209(in Chinese). (杨维涛, 郭伟圣, 张兵波, 常津, 化学学报, 2014, 72, 1209.)
[10] Wang, Z.-Y.; Cai, Y.-B.; Yi, L.-N.; Gao, J.; Yang, Z.-M. Chin. J. Chem. 2017, 35, 1057.
[11] Kwak, J.; Lee, S. Y. Langmuir 2013, 29, 4477.
[12] Elmes, R. B. P.; Jolliffe, K. A. Chem. Commun. 2015, 51, 4951.
[13] Prasad, C. Peptides 1995, 16, 151.
[14] Benedetti, E.; Corradini, P.; Pedone, C. J. Phys. Chem. 1969, 73, 2891.
[15] Corey, R. B. J. Am. Chem. Soc. 1938, 60, 1598.
[16] Manchineella, S.; Govindaraju, T. ChemPlusChem 2017, 82, 88.
[17] Govindaraju, T. Supramol. Chem. 2011, 23, 759.
[18] Govindaraju, T.; Pandeeswar, M.; Jayaramulu, K.; Jaipuria, G.; Atreya, H. S. Supramol. Chem. 2011, 23, 487.
[19] Palmore, G. T. R.; Luo, T. J. M.; McBride-Wieser, M. T.; Picciotto, E. A.; Reynoso-Paz, C. M. Chem. Mater. 1999, 11, 3315.
[20] Di Blasio, B.; Pavone, V.; Nastri, F.; Isernia, C.; Saviano, M.; Pedone, C.; Cucinotta, V.; Impellizzeri, G.; Rizzarelli, E.; Vecchio, G. Natl. Acad. Sci. U. S. A. 1992, 89, 7218.
[21] Bergeron, R. J.; Phanstiel IV, O.; Yao, G. W.; Milstein, S.; Weimar, W. R. J. Am. Chem. Soc. 1994, 116, 8479.
[22] Bellezza, I.; Peirce, M. J.; Minelli, A. Trends Mol. Med. 2014, 20, 551.
[23] González, O.; Ortíz-Castro, R.; Díaz-Pérez, C.; Díaz-Pérez, A. L.; Magaña-Dueñas, V.; López-Bucio, J.; Campos-García, J. Microb. Ecol. 2017, 73, 616.
[24] Nishanth Kumar, S.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J. J. Pept. Sci. 2014, 20, 173.
[25] Van der Merwe, E.; Huang, D.; Peterson, D.; Kilian, G.; Milne, P. J.; Van de Venter, M.; Frost, C. Peptides 2008, 29, 1305.
[26] Yang, M.; Yuan, C.; Shen, G.; Chang, R.; Xing, R.; Yan, X. J. Colloid Interface Sci. 2019, 557, 458.
[27] Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Science 2017, 358, 9756.
[28] Tao, K.; Fan, Z.; Sun, L.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z.; Galster, S.; Ma, J.-J.; Yan, F.; Si, M.-S.; Qu, S.-N.; Zhang, M.-J.; Gazit, E.; Li, J.-B. Nat. Commun. 2018, 9, 3217.
[29] Seo, M. J.; Song, J.; Kantha, C.; Khazi, M. I.; Kundapur, U.; Heo, J. M.; Kim, J. M. Langmuir 2018, 34, 8365.
[30] Yang, M.; Xing, R.; Shen, G.; Yuan, C.; Yan, X. Colloids Surf., A 2019, 572, 259.
[31] Zong, Q.-Y.; Geng, H.-M.; Wang, L.; Ye, L.; Zhang, A.-Y.; Shao, Z.-Q.; Feng, Z.-G. Acta Chim. Sinica 2015, 73, 423(in Chinese). (宗倩颖, 耿慧敏, 王璐, 叶霖, 张爱英, 邵自强, 冯增国, 化学学报, 2015, 73, 423.)
[32] Tucker, M. J.; Oyola, R.; Gai, F. Biopolymers 2006, 83, 571.
[33] Fan, Z.; Sun, L.; Huang, Y.; Wang, Y.; Zhang, M. Nat. Nanotechnol. 2016, 11, 388.
[34] Wang, C.; Zhang, L.; Yang, J.; Yang, J.; Wang, D.; Sun, Y.; Wang, J. Appl. Surf. Sci. 2018, 453, 173.
[35] Wang, J.; Zhang, L.; Yang, J.; Yan, H.; Li, X.; Wang, C.; Wang, D.; Sun, Y.; Xu, H. Langmuir 2019, 35, 5617.
[36] Zou, R.; Wang, Q.; Wu, J.; Schmuck, C.; Tian, H. Chem. Soc. Rev. 2015, 44, 5200.
[37] Faller, P.; Hureau, C.; Berthoumieu, O. Inorg. Chem. 2013, 52, 12193.
[38] Ren, X.; Zou, Q.; Yuan, C.; Chang, R.; Xing, R.; Yan, X. Angew. Chem., Int. Ed. 2019, 58, 5872.
Outlines

/