Two Polymorphs of Triphenylamine-substituted Benzo[d]imidazole: Mechanoluminescence with Different Colors and Mechanofluorochromism with Emission Shifts in Opposite Direction
Received date: 2019-08-19
Online published: 2019-10-22
Mechanofluorochromism (MFC) and mechanoluminescence (ML) are two types of significant solid-state optical phenomena which are closely dependent on conformations, packing modes and intermolecular interactions. Herein, through a three-step route involving aromatic nucleophilic substitution, reduction and oxidative cyclization in DMSO under air, a benzo[d]imidazole with triphenylamine and 4-cyanophenyl respectively located at C(2)- and N(1)-position is obtained in good yields. Two polymorphs TBIMB and TBIMG of 4-(2-(4-(diphenylamino)phenyl)-1H-benzo[d]imidazol-1-yl)benzonitrile (TBIM) corespondingly exhibit intense deep-blue (435 nm) and green fluorescence (505 nm). Under force stimuli, both polymorphs turn into amorphous phase with cyan fluorescence (457 nm). By fuming in solvent vapor or annealing treatment, only the ground TBIMB sample can be completely restored into the original crystalline structure, the ground TBIMG sample is just transformed into TBIMBcrystal. It is assumed that the enhanced energy barrier induced by the denser packing in TBIMG crystal makes the conversion from in amorphous phase to crystalline one kinetically infeasible. The crystallography reveals that triphenylamine moiety in TBIMG crystal is less restrained by intermolecular interactions than that in TBIMB crystal, which results in the long-wavelength TICT emission in the former crystal and the short-wavelength LE emission in the latter one. In exposure to force stimuli, TBIMB and TBIMG crystals respectively give out the blue (432 nm) and green (500 nm) flash. It is revealed by crystallography that both polymorphs hold centrosymmetric space groups. DFT calculations based on the molecular couples with strong intermolecular interactions demonstrate that the close-to-zero net dipole moments occurs on these couples. Hence, neither piezoelectric effect nor excitation of molecules on cracked surfaces by discharges between molecular couples should account for the ML behaviors of these two polymorphs. Due to the readily force-induced cleavage of the two crystals by particular chain-shaped packing, the endogenous friction discharge caused by relative movements between cleavage planes would excite molecules on these planes, and this mechanism is assumed to be mainly responsible for the ML activity of the two crystals.
Xiaojing Liu , Yanrong Jia , Hao Jiang , Guanlei Gao , Min Xia . Two Polymorphs of Triphenylamine-substituted Benzo[d]imidazole: Mechanoluminescence with Different Colors and Mechanofluorochromism with Emission Shifts in Opposite Direction[J]. Acta Chimica Sinica, 2019 , 77(11) : 1194 -1202 . DOI: 10.6023/A19080306
[1] | (a) Peng, B. Y.; Xu, S. D.; Chi, Z. G.; Zhang, X. Q.; Zhang, Y.; Xu, J. R. Prog. Chem. 2013, 25, 1805 (in Chinese). |
[1] | (彭邦银, 许适当, 池振国, 张锡奇, 张艺, 许家瑞, 化学进展, 2013, 25, 1805.) |
[1] | (b) Di, B. H.; Chen, Y. L. Chin. Chem. Lett. 2018, 29, 245; |
[1] | (c) Yuan, Y.; Yuan, W.; Chen, Y. L. Sci. China Mater. 2016, 59, 507; |
[1] | (d) Yuan, W.; Yuan, Y.; Chen, Y. L. Acta Polym. Sinica 2016, 11, 1495 (in Chinese). |
[1] | (袁伟, 袁媛, 陈于蓝, 高分子学报, 2016, 11, 1495.) |
[1] | (e) Yang, J.; Chi, Z.; Zhu, W.; Tang, B. Z.; Li, Z. Sci. China Chem. 2019, 62, 1090; |
[1] | (f) Li, Q.; Li, Z. Adv. Sci. 2017, 4, 1600484. |
[2] | (a) Dong, Y. Q.; Lam, J. W. Y.; Tan, B. Z. J. Phys. Chem. Lett. 2015, 6, 3429; |
[2] | (b) Chi, Z.; Zhang, X.; Xu, B.; Zhou, X.; Ma, C.; Zhang, Y.; Liu, S.; Xu, J. Chem. Soc. Rev. 2012, 41, 3878; |
[2] | (c) Wang, C.; Li, Z. Mater. Chem. Front. 2017, 1, 2174; |
[2] | (d) Yang, Z.; Chi, Z.; Mao, Zhang, Z. Y.; Liu, S.; Zhao, J. M.; Aldred, P.; Chi, Z. Mater. Chem. Front. 2018, 2, 861; |
[2] | (e) Varughese, S. J. Mater. Chem. C 2014, 2, 3499; |
[2] | (f) Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Adv. Mater. 2016, 28, 1073; |
[2] | (g) Bian, G. F.; Huang, H.; Zhan, L. L.; Lü, X. J.; Cao, F.; Zhang, C.; Zhang, Y. J. Acta Phys.-Chim. Sin. 2016, 32, 589(in Chinese). |
[2] | (边高峰, 黄华, 占玲玲, 吕晓静, 曹枫, 张诚, 张玉建, 物理化学学报, 2016, 32, 589.) |
[2] | (h) Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165(in Chinese). |
[2] | (孙静波, 张恭贺, 贾小宇, 薛鹏冲, 贾俊辉, 卢然, 化学学报, 2016, 74, 165); |
[2] | (i) Ouyang, M.; Yu, C. H.; Zhang, Y. J.; Hu, B.; Lü, X. J.; Sun, J. W.; Zhang, C. Acta Phys.-Chim. Sin. 2012, 28, 2944(in Chinese). |
[2] | (欧阳密, 俞春辉, 张玉建, 胡彬, 吕晓静, 孙璟玮, 张诚, 物理化学学报, 2012, 28, 2944.) |
[3] | (a) Seki, T.; Takamatsu, Y.; Ito, H. J. Am. Chem. Soc. 2016, 138, 6252; |
[3] | (b) Jin, M.; Seki, T.; Ito, H. J. Am. Chem. Soc. 2017, 139, 7452; |
[3] | (c) Yagai, S.; Okamura, S.; Nakano, Y.; Yamauchi, M.; Kishikawa, K.; Karatsu, T.; Kitamura, A.; Ueno, A.; Kuzuhara, D.; Yamada, H.; Seki, T.; Ito, H. Nat. Commun. 2014, 5, 4013. |
[4] | (a) Zheng, K.; Zheng, Y.; Peng, L.; Xiang, Y.; Tong, A. J. J. Phys. Chem. C 2017, 121, 21610; |
[4] | (b) Lü, Y.; Liu, Y.; Ye, X.; Liu, G. F.; Tao, X. T. CrystEngComm 2015, 17, 526; |
[4] | (c) Chung, K.; Kwon, M. S.; Leung, B. M.; Kim, J. S. ACS Cent. Sci. 2015, 1, 94. |
[5] | (a) Shi, P.; Duan, Y.; Wei, W.; Xu, Z.; Li, Z.; Han, T. J. Mater. Chem. C 2018, 6, 2476; |
[5] | (b) Feng, C.; Wang, K.; Xu, Y.; Liu, L.; Zou, B.; Lu, P. Chem. Commun. 2016, 52, 3836; |
[5] | (c) Wang, L.; Wang, K.; Zou, B.; Ye, K.; Zhang, H.; Wang, Y. Adv. Mater. 2015, 27, 2918; |
[5] | (d) Xie, W.-Z.; Zheng, H.-C.; Zheng, Y.-S. J. Mater. Chem. C 2017, 5, 10462. |
[6] | (a) Hirata, S.; Watanabe, T. Adv. Mater. 2006, 18, 2725; |
[6] | (b) Lim, S. J.; An, B. K.; Jung, S. D.; Chung, M. A.; Park, S. Y. Angew. Chem., Int. Ed. 2004, 43, 6346; |
[6] | (c) Olson, C. E.; Previte, M. J. R.; Fourkas, J. T. Nat. Mater. 2002, 1, 225; |
[6] | (d) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002, 420, 759. |
[7] | (a) Kishimura, A.; Yamashita, T.; Yamaguchi, K.; Aida, T. Nat. Mater. 2005, 4, 546; |
[7] | (b) Zhu, X.; Liu, R.; Li, Y.; Huang, H.; Wang, Q.; Wang, D.; Zhu, X.; Liu, S.; Zhu, H. Chem. Commun. 2014, 50, 12951; |
[7] | (c) Qi, Q.; Liu, Y.; Fang, X.; Zhang, Y.; Chen, P.; Wang, Y.; Yang, B.; Xu, B.; Tian, W.; Zhang, S. X. RSC Adv. 2013, 3, 7996; |
[7] | (d) Kumar, P.; Dwivedi, J.; Gupta, B. K. J. Mater. Chem. C 2014, 2, 10468; |
[7] | (e) Lu, X.-L.; Xia, M. J. Mater. Chem. C 2016, 4, 9350. |
[8] | (a) Yuan, W. Z.; Tan, Y.; Gong, Y.; Lu, P.; Lam, J. W. Y.; Shen, X. Y.; Feng, C.; Sung, H. Y.; Lu, Y.; Williams, I. D.; Sun, J. Z.; Zhang, Y.; Tang, B. Z. Adv. Mater. 2013, 25, 2837; |
[8] | (b) Li, C.; Tang, X.; Zhang, L.; Li, C.; Liu, Z.; Bo, Z.; Dong, Y. Q.; Tian, Y.-H.; Dong, Y.; Tang, B. Z. Adv. Optical Mater. 2015, 3, 1184; |
[8] | (c) Naeem, K. C.; Subhakumari, A.; Varughese, S.; Nair, V. C. J. Mater. Chem. C 2015, 3, 10225; |
[8] | (d) Sun, J.; Han, J.; Liu, Y.; Duan, Y.; Han, T.; Yuan, J. J. Mater. Chem. C 2016, 4, 8276; |
[8] | (e) Xue, P.; Yang, Z.; Chen, P. J. Mater. Chem. C 2018, 6, 4994. |
[9] | (a) Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2011, 50, 9128; |
[9] | (b) Yoon, S.-J.; Chung, J. W.; Gierschner, J.; Kim, K. S.; Choi, M.-G.; Kim, D.; Park, S. Y. J. Am. Chem. Soc. 2010, 132, 13675; |
[9] | (c) Sun, H.; Liu, S.; Lin, W.; Zhang, K. Y.; Lü, W.; Huang, W.; Huo, F.; Yang, H.; Jenkins, G.; Zhao, Q.; Huang, W. Nat. Commun. 2014, 5, 3601; |
[9] | (d) Zhang, K. Y.; Liu, S.; Zhao, Q.; Huang, W. Coord. Chem. Rev. 2016, 319, 180; |
[9] | (e) Chen, X.; Sun, G.; Zhang, T.; Liu, S.; Zhao, Q.; Huang, W. Adv. Mater. 2016, 28, 7137; |
[9] | (f) Zhao, Q.; Xu, W.; Sun, H.; Yang, J.; Zhang, K. Y.; Liu, S.; Ma, Y.; Huang, W. Adv. Opt. Mater. 2016, 4, 1167; |
[9] | (g) Lin, W.; Zhao, Q.; Sun, H.; Zhang, K. Y.; Yang, H.; Yu, Q.; Zhou, X.; Guo, S.; Liu, S.; Huang, W. Adv. Opt. Mater. 2015, 3, 368; |
[9] | (h) Han, J.; Sun, J.; Li, Y.; Duan, Y.; Han, T. J. Mater. Chem. C 2016, 4, 9287. |
[10] | (a) Xu, B.; Li, W.; He, J.; Wu, S.; Zhu, Q.; Yang, Z.; Wu, Y.-C.; Zhang, Y.; Jin, C.; Lu, P.-Y.; Chi, Z.; Liu, S.; Xu, J.; Bryce, M. R. Chem. Sci. 2016, 7, 5307; |
[10] | (b) Xu, S.; Liu, T.; Mu, Y.; Wang, Y.-F.; Chi, Z.; Lo, C.-C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem. 2015, 127, 888; |
[10] | (c) Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 880; |
[10] | (d) Neen, K. K.; Sudhakar, P.; Dipak, K.; Thilagar, P. Chem. Commun. 2017, 53, 3641; |
[10] | (e) Xu, B.; He, J.; Mu, Y.; Zhu, Q.; Wu, S.; Wang, Y.; Zhang, Y.; Jin, C.; Lo, C.; Chi, Z.; Lien, A.; Liu, S.; Xu, J. Chem. Sci. 2015, 6, 3236; |
[10] | (f) Nakayama, H.; Nishida, J.; Takada, N.; Sato, H.; Yamashita, Y. Chem. Mater. 2012, 24, 671; |
[10] | (g) Nishida, J.; Ohura, H.; Kita, Y.; Hasegawa, H.; Kawase, T.; Takada, N.; Sato, H.; Sei, Y.; Yamashita, Y. J. Org. Chem. 2016, 81, 433; |
[10] | (h) Liu, M. L.; Wu, Q.; Shi, H. F.; An, Z. F.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese). (刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.) |
[11] | (a) Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220; |
[11] | (b) Liu, F.; Tu, J.; Wang, X.; Wang, J.; Gong, Y.; Han, M.; Dang, X.; Liao, Q.; Peng, Q.; Li, Q.; Li, Z. Chem. Commun. 2018, 54, 5598. |
[12] | (a) Yang, J.; Ren, Z.; Chen, B.; Fang, M.; Zhao, Z.; Tang, B. Z.; Peng, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9242; |
[12] | (b) Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 880. |
[13] | Xie Z.; Yu T.; Chen J.; Ubba E.; Wang L.; Mao Z.; Su T.; Zhang Y.; Aldred M. P.; Chi Z. Chem. Sci. 2018, 9, 5787 |
[14] | Hardy G. E.; Baldwin J. C.; Zink J. I.; Kaska W. C.; Liu P.; Dubois L. J. Am. Chem. Soc. 1977, 99, 3552 |
[15] | Zink J. I.; Chandra B. P. J. Phys. Chem. 1982, 86, 5 |
/
〈 |
|
〉 |