Review

New Polymerizations Based on Green Monomer of Carbon Dioxide

  • Song Bo ,
  • Qin Anjun ,
  • Tang Ben Zhong
Expand
  • a State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640;
    b Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Hong Kong

Received date: 2019-09-15

  Online published: 2019-10-31

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21788102, 21525417, 21490571), the Natural Science Foundation of Guangdong Province (Nos. 2016A030312002, 2019B030301003), and the Innovation and Technology Commission of Hong Kong (ITC-CNERC14S01).

Abstract

Carbon dioxide (CO2) is an abundant, inexpensive, non-toxic and renewable C1 resource, and it is also a kind of green monomer. The polymerizations based on CO2 have been one of the hot research topics. The copolymerization of CO2 and epoxide monomers was widely studied in the past few years and has been industrialized. Some new polymerizations based on CO2 have also been reported recently. There are two ways to produce polymeric materials from CO2. One is converting CO2 into monomers for further ring opening or step growth polymerizations, such as lactone, cyclic carbonates, furan-2,5-dicarboxylic acid. Another is directly using CO2 as a monomer for the copolymerization with other monomers to generate polymers. They are both significant for developing new polymerizations based on CO2 and expanding CO2-based polymeric materials. The advances in converting CO2 into polymeric materials during the past few years are summarized in this review and the perspective in this area is discussed.

Cite this article

Song Bo , Qin Anjun , Tang Ben Zhong . New Polymerizations Based on Green Monomer of Carbon Dioxide[J]. Acta Chimica Sinica, 2020 , 78(1) : 9 -22 . DOI: 10.6023/A19090340

References

[1] Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[2] Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
[3] Du, P.; Su, T.; Luo, X.; Zhou, X.; Qin, Z.; Ji, H.; Chen, J. Chin. J. Chem. 2018, 36, 538.
[4] Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.
[5] Zhang, W.; Zhang, N.; Guo, C.; Lü, X. B. Chin. J. Org. Chem. 2017, 37, 1309(in Chinese). (张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.)
[6] Cao, Y.; He, X.; Wang, N.; Li, H. R.; He, L. N. Chin. J. Chem. 2018, 36, 644.
[7] Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Chin. J. Chem. 2018, 36, 399.
[8] Xu, P.; Wang, S. Y.; Fang, Y.; Ji, S. J. Chin. J. Org. Chem. 2018, 38, 1626(in Chinese). (徐佩, 汪顺义, 方毅, 纪顺俊, 有机化学, 2018, 38, 1626.)
[9] Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Part C:Polym. Lett. 1969, 7, 287.
[10] Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
[11] Lu, X. B.; Ren, W. M.; Wu, G. P. Acc. Chem. Res. 2012, 45, 1721.
[12] Li, Y.; Zhang, Y. Y.; Liu, B.; Zhang, X. H. Chin. J. Polym. Sci. 2018, 36, 139.
[13] Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Prog. Polym. Sci. 2018, 82, 120.
[14] Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R. Acc. Chem. Res. 2004, 37, 836.
[15] Darensbourg, D. J. Chem. Rev. 2007, 107, 2388.
[16] Trott, G.; Saini, P. K.; Williams, C. K. Philos. Trans. R. Soc., A 2016, 374, 20150085.
[17] Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018.
[18] Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed. 2004, 43, 6618.
[19] Sugimoto, H.; Inoue, S. J. Polym. Sci., Part A:Polym. Chem. 2004, 42, 5561.
[20] Noh, E. K.; Na, S. J.; Sujith, S.; Kim, S. W.; Lee, B. Y. J. Am. Chem. Soc. 2007, 129, 8082.
[21] Ohkawara, T.; Suzuki, K.; Nakano, K.; Mori, S.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 10728.
[22] Wang, Y.; Qin, Y.; Wang, X.; Wang, F. ACS Catal. 2015, 5, 393.
[23] Zhuo, C.; Qin, Y.; Wang, X.; Wang, F. Chin. J. Chem. 2018, 36, 299.
[24] Luo, M.; Li, Y.; Zhang, Y. Y.; Zhang, X. H. Polymer 2016, 82, 406.
[25] Sasaki, Y.; Inoue, Y.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1976, 15, 605.
[26] Musco, A.; Perego, C.; Tartiari, V. Inorg. Chim. Acta 1978, 28, 147.
[27] Behr, A.; Juszak, K.-D. J. Org. Chem. 1983, 255, 263.
[28] Braunstein, P.; Matt, D.; Nobel, D. J. Am. Chem. Soc. 1988, 110, 3207.
[29] Dinjus, E.; Leitner, W. Appl. Org. Chem. 1995, 9, 43.
[30] Pitter, S.; Dinjus, E. J. Mol. Catal. Chem. 1997, 125, 39.
[31] Beller, M.; Bolm, C. ChemInform 1998, 36, 211.
[32] Nakano, R.; Ito, S.; Nozaki, K. Nat. Chem. 2014, 6, 325.
[33] Liu, M.; Sun, Y.; Liang, Y.; Lin, B. L. ACS Macro Lett. 2017, 1373.
[34] Zhang, Y.; Xia, J.; Song, J.; Zhang, J.; Ni, X.; Jian, Z. Macromolecules 2019, 52, 2504.
[35] Xu, Y.-C.; Zhou, H.; Sun, X.-Y.; Ren, W.-M.; Lu, X. B. Macromolecules 2016, 49, 5782.
[36] Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561.
[37] Kihara, N.; Hara, N.; Endo, T. J. Org. Chem. 1993, 58, 6198.
[38] Song, J. L.; Zhang, Z. F.; Han, B. X.; Hu, S. Q.; Li, W. J.; Xie, Y. Green Chem. 2008, 10, 1337.
[39] Xie, Y.; Zhang, Z. F.; Jiang, T.; He, J. L.; Han, B. X.; Wu, T. B.; Ding, K. L. Angew. Chem. In. Ed. 2007, 46, 7255.
[40] Gu, Y.; Shi, F.; Deng, Y. J. Org. Chem. 2004, 69, 391.
[41] Song, Q. W.; Yu, B.; Li, X. D.; Ma, R.; Diao, Z. F.; Li, R. G.; Li, W.; He, L. N. Green Chem. 2014, 16, 1633.
[42] Song, Q.-W.; He, L.-N. Adv. Synth. Catal. 2016, 358, 1251.
[43] Eghbali, N.; Li, C. J. Green Chem. 2007, 9, 213.
[44] Wang, J. L.; Wang, J. Q.; He, L. N.; Dou, X. Y.; Wu, F. Green Chem. 2008, 10, 1218.
[45] Gennen, S.; Grignard, B.; Tassaing, T.; Jerome, C.; Detrembleur, C. Angew. Chem., Int. Ed. 2017, 56, 10394.
[46] Gennen, S.; Grignard, B.; Jérôme, C.; Detrembleur, C. Adv. Synth. Catal. 2019, 361, 355.
[47] Liu, B.; Zhang, X. H. Gen. Chem. 2018, 4, 180007.
[48] Ouhib, F.; Grignard, B.; Van Den Broeck, E.; Luxen, A.; Robeyns, K.; Van Speybroeck, V.; Jerome, C.; Detrembleur, C. Angew. Chem., Int. Ed. 2019, 58, 11768.
[49] Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Nature 2016, 531, 215.
[50] Kadokawa, J.; Habu, H.; Fukamachi, S.; Karasu, M.; Tagaya, H.; Chiba, K. Macromol. Rapid Commun. 1998, 19, 657.
[51] Tamura, M.; Ito, K.; Honda, M.; Nakagawa, Y.; Sugimoto, H.; Tomishige, K. Sci. Rep. 2016, 6, 24038.
[52] Oi, S.; Nemoto, K.; Matsuno, S.; Inoue, Y. Macromol. Rapid Commun. 1994, 15, 133.
[53] Chen, Z. L.; Hadjichristidis, N.; Feng, X. S.; Gnanou, Y. Polym. Chem. 2016, 7, 4944.
[54] Yamazaki, N.; Higashi, F.; Iguchi, T. J. Polym. Sci. Polym. Lett. Ed. 1974, 12, 517.
[55] Yamazaki, N.; Nakahama, S.; Higashi, F. Ind. Eng. Chem. Prod. Res. Dev. 1979, 18, 249.
[56] Wu, C. Y.; Wang, J. Y.; Chang, P. J.; Cheng, H. Y.; Yu, Y. C.; Wu, Z. J.; Dong, D. W.; Zhao, F. Y. Phys. Chem. Chem. Phys. 2012, 14, 464.
[57] Wu, P.-X.; Cheng, H.-Y.; Shi, R.-H.; Jiang, S.; Wu, Q.-F.; Zhang, C.; Arai, M.; Zhao, F.-Y. Adv. Synth. Catal. 2019, 361, 317.
[58] Chen, Z.; Hadjichristidis, N.; Feng, X.; Gnanou, Y. Macromolecules 2017, 50, 2320.
[59] Yoo, W. J.; Li, C. J. Adv. Synth. Catal. 2008, 350, 1503.
[60] Zhao, J. W.; Huang, H. W.; Qi, C. R.; Jiang, H. F. Eur. J. Org. Chem. 2012, 29, 5665.
[61] Yu, B.; Cheng, B. B.; Liu, W. Q.; Li, W.; Wang, S. S.; Cao, J.; Hu, C. W. Adv. Synth. Catal. 2016, 358, 90.
[62] Teffahi, D.; Hocine, S.; Li, C. J. Lett. Org. Chem. 2012, 9, 585.
[63] Ugi, I.; Meyr, R.; Fetzer, U. Angew. Chem. 1959, 71, 386.
[64] Ugi, I.; Steinbruckner, C. Chem. Ber. 1961, 94, 2802.
[65] Sehlinger, A.; Schneider, R.; Meier, M. A. Macromol. Rapid Commun. 2014, 35, 1866.
[66] Tsuda, T.; Maruta, K.; Kitaike, Y. J. Am. Chem. Soc. 1992, 114, 1498.
[67] Oi, S.; Fukue, Y.; Nemoto, K.; Inoue, Y. Macromolecules 1996, 29, 2694.
[68] Song, B.; He, B.; Qin, A.; Tang, B. Z. Macromolecules 2018, 51, 42.
[69] Fu, W.; Dong, L.; Shi, J.; Tong, B.; Cai, Z.; Zhi, J.; Dong, Y. Polym. Chem. 2018, 9, 5543.
[70] Song, B.; Bai, T.; Xu, X.; Chen, X.; Liu, D.; Guo, J.; Qin, A.; Ling, J.; Tang, B. Z. Macromolecules 2019, 52, 5546.
[71] Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643.
[72] Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
[73] Stephan, D. W. Science 2016, 354, aaf7229.
[74] Liu, R.; Liu, X.; Ouyang, K.; Yan, Q. ACS Macro Lett. 2019, 8, 200.
Outlines

/