Review

Cyclic Lanthanide-based Molecular Clusters: Assembly and Single Molecule Magnet Behavior

  • Tian Haiquan ,
  • Zheng Li-Min
Expand
  • a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023;
    b Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059

Received date: 2019-09-06

  Online published: 2019-11-06

Supported by

Project supported by the National Key R&D Program of China (Nos. 2017YFA0303203, 2018YFA0306004) and the National Natural Science Foundation of China (No. 21731003).

Abstract

Lanthanide-based single molecule magnets have received tremendous attentions in recent years owing to the strong magnetic anisotropies of the lanthanide ions arising from the strong spin-orbital couplings. Cyclic metal clusters, also called molecular wheels or metallacrown ether, are a subclass of metal clusters. From the magnetic point of view, cyclic transition metal clusters can be devided into three types, e.g. ferromagnetically coupled cyclic clusters which favor single molecule magnet behavior, and antiferromagnetically coupled even-or odd-numbered cyclic clusters with S=0 or S=1/2 ground state. The magnetic properties of lanthanide-based cyclic clusters are more complicated because the magnetic interactions between the lanthanide ions are extremely weak. The overall magnetic behavior is largely dominated by the single ion anisotropy and the dipole-dipole interactions between the metal ions. When the anisotropy axes of the lanthanide ions in the cyclic clusters are arranged in a toroidal manner, single-molecule toroics could be achieved. Therefore, the design and synthesis of cyclic lanthanide-based clusters can provide not only new materials with architectural beauty and single molecule magnet behavior, but also single-molecule toroics with vortex distribution of the magnetic dipoles of lanthanide ions, which would have potential applications in information storage, quantum computing, spintronic devices and multiferroic materials. Noting that lanthanide-based single-molecule toroics have been described detailly in several reviews, this article will summarize the current status of the cyclic lanthanide clusters with the focus on the design and assembly strategies, the structural characteristics and magnetic studies. Most work have been concentrated on the Ln3, Ln4 and Ln6 cyclic clusters, including those containing oxygen centers. Examples of even-numbered cyclic clusters Lnx (x ≥ 8) are much less, and those of odd-numbered cyclic clusters Lnx (x ≥ 5) are rare. As the cyclic clusters are frequently distorted to different extent, many of them exhibit single molecule magnet behavior, and only few of them show toroic magnetization. It remains future challenges to design and synthesize new lanthanide-based cyclic clusters with regular and flat geometries and toroically arranged magnetic moments, and to achieve the multifunctions in the same molecular composite.

Cite this article

Tian Haiquan , Zheng Li-Min . Cyclic Lanthanide-based Molecular Clusters: Assembly and Single Molecule Magnet Behavior[J]. Acta Chimica Sinica, 2020 , 78(1) : 34 -55 . DOI: 10.6023/A19090330

References

[1] Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.
[2] Milios, C. J.; Vinslava, A.; Wernsdorfer, W.; Moggach, S.; Parsons, S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2007, 129, 2754.
[3] (a) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694.
(b) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. J. Am. Chem. Soc. 2005, 127, 3650.
(c) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Angew. Chem. Int. Ed. 2005, 44, 2931.
[4] (a) Sessoli, R.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2328.
(b) Wang, B. W.; Jiang, S. D.; Wang, X. T.; Gao, S. Sci. China, Ser. B:Chem. 2009, 52, 1739.
(c) Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078.
(d) Sorace, L.; Benelli, C.; Gatteschi, D. Chem. Soc. Rev. 2011, 40, 3092.
(e) Zhang, P.; Guo, Y.-N.; Tang, J. Coord. Chem. Rev. 2013, 257, 1728.
(f) Ren, M.; Zheng, L.-M. Acta Chim. Sinica 2015, 73, 1091(in Chinese). (任旻, 郑丽敏, 化学学报, 2015, 73, 1091.)
(g) Li, H.; Meng, X.-X.; Wang, M.-M.; Wang, Y.-X.; Shi, W.; Cheng, P. Chinese J. Chem. 2019, 37, 373.
[5] Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna, F.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2011, 50, 6530.
[6] Rinehart, J. D.; Fang, M.; Evans, W. J.; Long, J. R. Nat. Chem. 2011, 3, 538.
[7] Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L. J. Am. Chem. Soc. 2016, 138, 2829.
[8] (a) Goodwin, C. A. P.; Ortu, F.; Reta, D.; Chilton, N. F.; Mills, D. P. Nature 2017, 548, 439.
(b) Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A. Angew. Chem. Int. Ed. 2017, 56, 11445.
(c) Guo, F.-S.; Day, B. M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R. A. Science 2018, 362, 1400.
[9] Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.
[10] Saalfrank, R. W.; Bernt, I.; Uller, E.; Hampel, F. Angew. Chem. Int. Ed. 1997, 36, 2482.
[11] McInnes, E. J. L.; Timco, G. A.; Whitehead, G. F. S.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2015, 54, 14244.
[12] Cadiou, C.; Murrie, M.; Paulsen, C.; Villar, V.; Wernsdorfer, W.; Winpenny, R. E. P. Chem. Commun. 2001, 2666.
[13] (a) Waldmann, O. Coord. Chem. Rev. 2005, 249, 2550.
(b) Lante, V.; Rousochatzakis, I.; Penc, K.; Waldmann, O.; Mila, F. Phys. Rev. B 2009, 79, 180412(R).
[14] (a) Schnack, J. Dalton Trans. 2010, 39, 4677.
(b) Bramwell, S. T.; Gingras, M. J. P. Science 2001, 294, 1495.
(c) Struck, J.; Olschlager, C.; Le Targat, R.; Soltan-Panahi, P.; Eckardt, A.; Lewenstein, M.; Windpassinger, P.; Sengstock, K. Science 2011, 333, 996.
[15] Cador, O.; Gatteschi, D.; Sessoli, R.; Larsen, F. K.; Overgaard, J.; Barra, A.-L.; Teat, S. J.; Timco, G. A.; Winpenny, R. E. P. Angew. Chem. Int. Ed. 2004, 43, 5196.
[16] Baker, M. L.; Timco, G. A.; Piligkos, S.; Mathieson, J. S.; Mutka, H.; Tuna, F.; Kozłowski, P.; Antkowiak, M.; Guidi, T.; Gupta, T.; Rath, H.; Woolfson, R. J.; Kamieniarz, G.; Pritchard, R. G.; Weihe, H.; Cronin, L; Rajaraman, G.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 19113.
[17] Yao, H.-C.; Wang, J.-J.; Ma, Y.-S.; Waldmann, O.; Du, W.-X.; Song, Y.; Li, Y.-Z.; Zheng, L.-M.; Decurtins, S.; Xin, X.-Q. Chem. Commun. 2006, 1745.
[18] Hoshino, N.; Nakano, M.; Nojiri, H.; Wernsdorfer, W.; Oshio, H. J. Am. Chem. Soc. 2009, 131, 15100.
[19] Fernandez, A.; Ferrando-Soria, J.; Pineda, E. M.; Tuna, F.; Vitorica-Yrezabal, I. J.; Knappke, C.; Ujma, J.; Muryn, C. A.; Timco, G. A.; Barran, P. E.; Ardavan, A.; Winpenny, R. E. P. Nat. Commun. 2016, 7, 10240.
[20] Bernot, K.; Luzon, J.; Bogani, L.; Etienne, M.; Sangregorio, C.; Shanmugam, M.; Caneschi, A.; Sessoli, R.; Gatteschi, D. J. Am. Chem. Soc. 2009, 131, 5573.
[21] (a) Ungur, L.; Lin, S.-Y.; Tang, J.; Chibotaru, L. F. Chem. Soc. Rev. 2014, 43, 6894.
(b) Tang, J.; Zhang, P. In Lanthanide Single Molecule Magnets, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, Chapter 4, pp. 127~166.
(c) Li, X.-L.; Tang, J. Dalton Trans. 2019, 48, 15358.
[22] Tang, J.; Hewitt, I. J.; Madhu, N. T.; Chastanet, G.; Wernsdorfer, W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 1729.
[23] (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed. 2008, 47, 4126.
(b) Luzon, J.; Bernot, K.; Hewitt, I. J.; Anson, C. E.; Powell, A. K.; Sessoli, R. Phys. Rev. Lett. 2008, 100, 247205.
[24] Plokhov, D. I.; Popov, A. I.; Zvezdin, A. K. Phys. Rev. B:Condens. Matter Mater. Phys. 2011, 84, 224436.
[25] Costes, J.-P.; Dahan, F.; Nicodème, F. Inorg. Chem. 2001, 40, 5285.
[26] Salman, Z.; Giblin, S. R.; Lan, Y.; Powell, A. K.; Scheuermann, R.; Tingle, R.; Sessoli, R. Phys. Rev. B 2010, 82, 174427.
[27] Xue, S.; Chen, X.-H.; Zhao, L.; Guo, Y.-N.; Tang, J. Inorg. Chem. 2012, 51, 13264.
[28] (a) Shen, S.; Xue, S.; Lin, S.-Y.; Zhao, L.; Tang, J. Dalton Trans. 2013, 42, 10413.
(b) Hänninen, M. M.; Mota, A. J.; Aravena, D.; Ruiz, E.; Sillanpää, R.; Evangelisti, M.; Colacio, E. Chem. Eur. J. 2014, 20, 8410.
[29] Zhang, L.; Zhang, P.; Zhao, L.; Wu, J.; Guo, M.; Tang, J. Inorg. Chem. 2015, 54, 5571.
[30] Lin, S.-Y.; Zhao, L.; Guo, Y.-N.; Zhang, P.; Guo, Y.; Tang, J. Inorg. Chem. 2012, 51, 10522.
[31] Dolinar, B. S.; Alexandropoulos, D. I.; Vignesh, K. R.; James, T.; Dunbar, K. R. J. Am. Chem. Soc. 2018, 140, 908.
[32] Wang, Y.-X.; Shi, W.; Li, H.; Song, Y.; Fang, L.; Lan, Y.; Powell, A. K.; Wernsdorfer, W.; Ungur, L.; Chibotaru, L. F.; Shen, M.; Cheng, P. Chem. Sci. 2012, 3, 3366.
[33] (a) Lin, S.-Y.; Guo, Y.-N.; Zhao, L.; Zhang, P.; Ke, H.; Tang, J. Chem. Commun. 2012, 48, 6924.
(b) Lin, S.-Y.; Wang, C.; Zhao, L.; Tang, J. Chem. Asian J. 2014, 9, 3558.
[34] Gould, C. A.; Darago, L. E.; Gonzalez, M. I.; Demir, S.; Long, J. R. Angew. Chem. Int. Ed. 2017, 56, 10103.
[35] Woodruff, D. N.; Tuna, F.; Bodensteiner, M.; Winpenny, R. E. P.; Layfield, R. A. Organometallics 2013, 32, 1224.
[36] Pineda, E. M.; Lan, Y.; Fuhr, O.; Wernsdorfer, W.; Ruben, M. Chem. Sci. 2017, 8, 1178.
[37] Guo, P.-H.; Liu, J.; Wu, Z.-H.; Yan, H.; Chen, Y.-C.; Jia, J.-H.; Tong, M.-L. Inorg. Chem. 2015, 54, 8087.
[38] Xue, S.; Zhao, L.; Guo, Y.-N.; Chen, X.-H.; Tang, J. Chem. Commun. 2012, 48, 7031.
[39] Wu, S.-Q.; Xie, Q.-W.; An, G.-Y.; Chen, X.; Liu, C.-M.; Kou, H.-Z. Dalton Trans. 2013, 42, 4369.
[40] Anwar, M. U.; Thompson, L. K.; Dawe, L. N.; Habib, F.; Murugesu, M. Chem. Commun. 2012, 48, 4576.
[41] Das, C.; Vaidya, S.; Gupta, T.; Frost, J. M.; Righi, M.; Brechin, E. K.; Affronte, M.; Rajaraman, G.; Shanmugam, M. Chem.-Eur. J. 2015, 21, 15639.
[42] Wu, J.; Lin, S.-Y.; Shen, S.; Li, X.-L.; Zhao, L.; Zhang, L.; Tang, J. Dalton Trans. 2017, 46, 1577.
[43] Xue, S.; Zhao, L.; Guo, Y.-N.; Tang, J. Dalton Trans. 2012, 41, 351.
[44] Lu, J.; Zhang, Y.-Q.; Li, X.-L.; Guo, M.; Wu, J.; Zhao, L.; Tang, J. Inorg. Chem. 2019, 58, 5715.
[45] Bi, Y.; Wang, X.-T.; Liao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Inorg. Chem. 2009, 48, 11743.
[46] Tian, H.; Su, J.-B.; Bao, S.-S.; Kurmoo, M.; Huang, X.-D.; Zhang, Y.-Q.; Zheng, L.-M. Chem. Sci. 2018, 9, 6424.
[47] (a) Langley, S. K.; Moubaraki, B.; Forsyth, C. M.; Gass, I. A.; Murray, K. S. Dalton Trans. 2010, 39, 1705.
(b) Ungur, L.; Langley, S. K.; Hooper, T. N.; Moubaraki, B. E.; Brechin, K.; Murray, K. S.; Chibotaru, L. F. J. Am. Chem. Soc. 2012, 134, 18554.
[48] Baniodeh, A.; Magnani, N.; Bräse, S.; Anson, C. E.; Powell, A. K. Dalton Trans. 2015, 44, 6343.
[49] Tian, H.; Bao, S.-S.; Zheng, L.-M. Dalton Trans. 2015, 44, 14208.
[50] Joarder, B.; Mukherjee, S.; Xue, S.; Tang, J.; Ghosh, S. K. Inorg. Chem. 2014, 53, 7554.
[51] Tian, H.; Bao, S.-S.; Zheng, L.-M. Eur. J. Inorg. Chem. 2016, 3184.
[52] Lu, J.; Montigaud, V.; Cador, O.; Wu, J.; Zhao, L.; Li, X.-L.; Guo, M.; Le Guennic, B.; Tang, J. Inorg. Chem. 2019, 58, 11903.
[53] Tian, H.; Bao, S.-S.; Zheng, L.-M. Chem. Commun. 2016, 52, 2314.
[54] Tian, H.; Zhao, L.; Tang, J. Cryst. Growth. Des. 2018, 18, 1173.
[55] Chandrasekhar, V.; Bag, P.; Colacio, E. Inorg. Chem. 2013, 52, 4562.
[56] Kajiwara, T.; Wu, H.; Ito, T.; Iki, N.; Miyano, S. Angew. Chem. Int. Ed. 2004, 43, 1832.
[57] Westin, L. G.; Kritikos, M.; Caneschi, A. Chem. Commun. 2003, 1012.
[58] Das, S.; Dey, A.; Kundu, S.; Biswas, S.; Narayanan, R. S.; Ti-tos-Padilla, S.; Lorusso, G.; Evangelisti, M.; Colacio, E.; Chandrasekhar, V. Chem.-Eur. J. 2015, 21, 16955.
[59] Kajiwara, T.; Katagiri, K.; Takaishi, S.; Yamashita, M.; Iki, N. Chem. Asian J. 2006, 1, 349.
[60] Zhao, L.; Xue, S.; Tang, J. Inorg. Chem. 2012, 51, 5994.
[61] Wang, K.; Chen, Z.-L.; Zou, H.-H.; Hu, K.; Li, H.-Y.; Zhang, Z.; Sun, W.-Y.; Liang, F.-P. Chem. Commun. 2016, 52, 8297.
[62] Biswas, S.; Das, S.; Acharya, J.; Kumar, V.; van Leusen, J.; Kögerler, P.; Herrera, J. M.; Colacio, E.; Chandrasekhar, V. Chem.-Eur. J. 2017, 23, 5154.
Outlines

/