Article

Electrochemical Detection of Xanthine and Study for the Inhibition of Uric Acid Based on Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Electrode

  • Song Guangjie ,
  • Wu Tiaodi ,
  • Liu Fuxin ,
  • Zhang Binyan ,
  • Liu Xiuhui
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070

Received date: 2019-08-26

  Online published: 2019-11-07

Supported by

Project supported by the National Natural Science Foundation of China (No. 21565021).

Abstract

Nitrogen doped reduced graphene oxide (N-RGO) was successfully prepared by carbon thermal reduction method, which annealed graphene oxide (GO) and cyanamide at 900℃. The 0.2% acetic acid solution with chitosan (CS) was used as the dispersant of N-RGO to improve the dispersivity, electronic mass transfer rate, and biocompatibility of N-RGO. The morphology, structure and electrochemical properties of N-RGO and CS/N-RGO were investigated by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), and cyclic voltammetry (CV). FT-IR spectrum indicated graphene oxide (GO) was reduced and N-RGO was successfully prepared. The electrochemical experiments demonstrated that CS/N-RGO possesses large electrochemical effective area, strong adsorptive ability and fast electronic mass transfer rate. Then a novel electrochemical sensor for detection of xanthine was fabricated based on CS/N-RGO modified glassy carbon electrode (CS/N-RGO/GCE). It exhibited good electrochemical response toward the oxidation of xanthine with a linear range covering 2.99×10-8~1.07×10-4 mol/L, and the corresponding detection limit (LOD) of 9.96×10-9 mol/L (S/N=3). In addition, the electrochemical behaviors of xanthine on CS/N-RGO/GCE were explored using cyclic voltammetry (CV), which included the pH effect on the oxidation of xanthine and the effect of scan rate on the peak current and peak potential of xanthine. Usually, uric acid in the body is generated by xanthine under the catalysis of xanthine oxidase (XOR), and high concentration of uric acid can cause gout. The inhibition for the formation of uric acid is the most direct method for the treatment of gout. Hence, the inhibition for the formation of uric acid by febuxostat and allopurinol was researched by electrochemical method, manifesting febuxostat and allopurinol can inhibit the activity of xanthine oxidase, which did not make xanthine generating uric acid. Thus, this work is very meaningful in the field of the diagnosis and treatment of gout.

Cite this article

Song Guangjie , Wu Tiaodi , Liu Fuxin , Zhang Binyan , Liu Xiuhui . Electrochemical Detection of Xanthine and Study for the Inhibition of Uric Acid Based on Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Electrode[J]. Acta Chimica Sinica, 2020 , 78(1) : 82 -88 . DOI: 10.6023/A19080313

References

[1] Mohapatra, S.; Kabiraj, P.; Agarwal, T.; Asthana, S.; Annamalai, N.; Arsad, H.; Siddiqui, A. M.; Khursheed, M. H. J. Pharm. Pharm. Sci. 2015, 7, 360.
[2] Martinon, F.; Glimcher, L. H. J. Clin. Invest. 2006, 116, 2073.
[3] Alam, M. M.; Asiri, A. M.; Uddin, M. T.; Islam, M. A.; Rahman, M. M. RSC Adv. 2018, 8, 12562.
[4] Wang, Y.; Tong, L. L. Sens. Actuators, B 2010, 150, 43.
[5] Mandell, B. F. Clev. Clin. J. Med. 2002, 69, 583.
[6] Dincer, H. E.; Dincer, A. P.; Levinson, D. J. Clev. Clin. J. Med. 2002, 69, 594.
[7] Kalimuthu, P.; John, S. A. Talanta 2010, 80, 1686.
[8] Rahman, M. M.; Marwani, H. M.; Algethami, F. K.; Asiri, A. M. New J. Chem. 2017, 41, 6262.
[9] Hou, G. J. Contemp. Med. 2015, 21, 114(in Chinese). (侯国军, 当代医学, 2015, 21, 114.)
[10] Cooper, N.; Khosravan, R.; Erdmann, C.; Fiene, J.; Lee, J. W. J. Chromatogr. B 2006, 837, 1.
[11] Richter, T.; Shultz-Lockyear, L. L.; Oleschuk, R. D.; Bilitewski, U.; Harrison, D. J. Sens. Actuators, B 2002, 81, 369.
[12] Ni, Y. N.; Cao, D. X.; Kokot, S. Anal. Chim. Acta 2007, 588, 131.
[13] Reza, O.; Ali, A.; Zahra, A. Sens. Actuators, B 2013, 188, 621.
[14] Wang, Z. H.; Yu, J. B.; Gui, R. J.; Jin, H.; Xia, Y. Z. Biosens. Bioelectron. 2016, 79, 136.
[15] Li, S. M.; Yang, S. Y.; Wang, Y. S.; Lien, C. H.; Tien, H. W.; Hsiao, S. T.; Liao, W. H.; Tsai, H. P.; Chang, C. L.; Ma, C. C.; Hu, C. C. Carbon 2013, 59, 418.
[16] Guo, H. L.; Su, P.; Kang, X. F.; Ning, S. K. J. Mater. Chem. A 2013, 1, 2248.
[17] Usachov, D.; Vilkov, O.; Gruneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D. V. Nano Lett. 2011, 11, 5401.
[18] Zhang, Y.; Zhu, J. Y.; Ren, H. B.; Bi, Y. T.; Zhang, L. Chin. J. Chem. 2017, 35, 1069.
[19] Kong, D. Q.; Bi, S.; Wang, Z. H.; Xia, J. F.; Zimney, E. J.; Zhang, F. F. Anal. Chem. 2016, 88, 10667.
[20] Kumar, M. N.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.
[21] Yang, X. M.; Tu, Y. F.; Li, L.; Shang, S. M.; Tao, X. M. ACS Appl. Mater. Inter. 2010, 2, 1707.
[22] Liu, Y. G.; Li, W. M.; Wei, C. B.; Lv, L. L. Chin. J. Chem. 2012, 30, 1601.
[23] Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K. Macromol. Symp. 2017, 376, 1700006.
[24] Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. ACS Nano 2009, 3, 2653.
[25] Gao, H. C.; Xiao, F.; Ching, C. B.; Duan, H. W. ACS Appl. Mater. Inter. 2011, 3, 3049.
[26] Wu, P.; Qian, Y. D.; Du, P.; Zhang, H.; Cai, C. X. J. Mater. Chem. 2012, 22, 6402.
[27] Li, S. J.; He, J. Z.; Zhang, M. J.; Zhang, Q. R.; Lv, X. L. Electrochim. Acta 2013, 102, 58.
[28] Laviron, E. Electroanal. Chem. Inter. Electrochem. 1974, 52, 355.
[29] Li, Y. C.; Feng, S. Q.; Li, S. X.; Zhang, Y. Y.; Zhong, Y. M. Sens. Actuators, B 2014, 190, 999.
[30] Li, J. H.; Kuang, D. Z.; Feng, Y. L.; Zhang, F. X.; Xu, Z. F.; Liu, M. Q.; Wang, D. P. Biosens. Bioelectron. 2013, 42, 198.
[31] Wen, Y. P.; Chang, J.; Xu, L. J.; Liao, X. N.; Bai, L.; Lan, Y. D.; Li, M. F. J. Electroanal. Chem. 2017, 805, 159.
[32] Steel, A. B.; Herne, T. M.; Tarlov, M. J. Anal. Chem. 1998, 70, 4670.
[33] Dincer, H. E.; Dincer, A. P.; Levinson, D. J. Clev. Clin. J. Med. 2002, 69, 594.
[34] Mandell, B. F. Clev. Clin. J. Med. 2002, 69, 583.
[35] Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Int. J. Cardiol. 2016, 213, 8.
[36] Wilson, L.; Saseen, J. J. Pharmacotherapy 2016, 36, 906.
[37] Okamoto, K.; Eger, B. T.; Nishino, T.; Kondo, S.; Pai, E. F.; Nishino, T. J. Biol. Chem. 2003, 278, 48.
[38] Takano, Y.; Hase, K.; Horiuchi, H. Life Sci. 2005, 76, 35.
[39] Schumacher, H. R. Expert Opin. Invest. Drugs 2005, 14, 893.
Outlines

/