Article

Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1,3,5-Tribenzoylbenzene as Electron-Acceptor

  • Wang Zhiqiang ,
  • Bai Meidan ,
  • Zhang Ming ,
  • Zhang Zhiqiang ,
  • Feng Xun ,
  • Zheng Caijun
Expand
  • a College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934;
    b School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China(UESTC), Chengdu 610054;
    c Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001

Received date: 2019-10-16

  Online published: 2019-12-31

Supported by

Project supported by the National Natural Science Foundation of China (No. 51773029) and the Henan Natural Science Foundation (No. 182300410230).

Abstract

Two thermally activated delayed fluorescence (TADF) materials TBP-DmCz and TBP-TmCz were successfully synthesized using 1,3,5-tribenzoylbenzene (TBP) as electron-acceptor, 1,8-dimethylcarbazole (DmCz) and 1,3,6,8-tetra-methylcarbazole (TmCz) as electron-donor, respectively. Thermal gravimetric analysis show that the thermal decomposition temperatures (Td) are 479℃ for TBP-DmCz and 484℃ for TBP-TmCz and no glass transition was found for both materials during the differential scanning calorimetry investigations. The highest occupied molecular orbitals (HOMO) are confined on the carbazole unit, while the lowest unoccupied molecular orbitals (LUMO) are located on the 1,3,5-tribenzoylbenzene unit, and there is almost no overlap between HOMO and LUMO, which is the typical molecular orbital character of TADF materials. Meanwhile, TBP-DmCz and TBP-TmCz possess degenerated HOMO and LUMO, which would promote the radiative transitions as the transitions could take place from all degenerated LUMOs to HOMOs. The HOMO level of TBP-TmCz is obviously higher than that of TBP-DmCz due to increasing the number of methyl groups at the electron-donor carbazole, and the LUMO levels of TBP-DmCz and TBP-TmCz only show a small difference because these materials have the same electron-acceptor 1,3,5-tribenzoylbenzene. In toluene solution, these materials have very similar absorption spectra and exhibit absorption bands assigned to intramolecular charge-transfer transition. The spectral peaks are located at 488 nm for TBP-DmCz and 502 nm for TBP-TmCz, respectively, in toluene solution at room temperature. According to the fluorescence and phosphorescence spectra of these materials in 1,3-bis(N-carbazolyl)benzene (mCP) film at 77 K, the energy gaps between the lowest singlet and triplet (ΔEST) of TBP-DmCz and TBP-TmCz are calculated to be 0.05 and 0.01 eV, respectively. The fluorescence decay behaviors at different temperatures (100, 200 and 300 K) proved that emissions of TBP-DmCz and TBP-TmCz contain TADF component. The electroluminescence devices with TBP-DmCz and TBP-TmCz as the emitters show high efficiency and low efficiency roll-off. The maximum external quantum efficiencies of devices based on TBP-DmCz and TBP-TmCz are 13.6% and 18.3%, respectively.

Cite this article

Wang Zhiqiang , Bai Meidan , Zhang Ming , Zhang Zhiqiang , Feng Xun , Zheng Caijun . Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1,3,5-Tribenzoylbenzene as Electron-Acceptor[J]. Acta Chimica Sinica, 2020 , 78(2) : 140 -146 . DOI: 10.6023/A19100372

References

[1] Sun, Y. R.; Giebink, N. C.; Kanno, H.; Ma, B. W.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908.
[2] Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459, 234.
[3] Helander, M. G.; Wang, Z. B.; Qiu, J.; Greiner, M. T.; Puzzo, D. P.; Liu, Z. W. Science 2011, 332, 944.
[4] Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W. Nat. Photonics 2012, 459, 105.
[5] Sasabe, H.; Kido, J. J. Mater. Chem. C 2013, 1, 1699.
[6] Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367. (陈仕琦, 代军, 周凯峰, 罗艳菊, 苏仕健, 蒲雪梅, 黄艳, 卢志云, 化学学报, 2017, 75, 367.)
[7] Qiu, Z.; Tan, J.; Cai, N.; Wang, K.; Ji, S.; Huo, Y. Chin. J. Org. Chem. 2019, 39, 679. (邱志鹏, 谭继华, 蔡宁, 王凯, 籍少敏, 霍延平, 有机化学, 2019, 39, 679.)
[8] He, X.; Xiao, Y.; Yuan, X.; Ye, S.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 761. (何煦, 肖燏萍, 袁鑫磊, 叶尚辉, 姜鸿基, 有机化学, 2019, 39, 761.)
[9] Wang, F.; Cao, X.; Mei, L.; Zhang, X.; Hu, J.; Tao, Y. Chin. J. Chem. 2018, 36, 241.
[10] Zhou, W.; Liu, Z.; Wang, Z.; Hu, S.; Liang, A. Chin. J. Org. Chem. 2019, 39, 1214. (周文静, 刘志谦, 王志平, 胡斯帆, 梁爱辉, 有机化学, 2019, 39, 1214.)
[11] Xu, H.; Chen, R.; Sun, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.
[12] Volz, D.; Wallesch, M.; Fléchon, C.; Danz, M.; Verma, A.; Navarro, J. M.; Zink, D. M.; Bräse, S.; Baumann, T. Green Chem. 2015, 17, 1988.
[13] Chi, Y.; Tong, B.; Chou, P.-T. Coord. Chem. Rev. 2014, 281, 1.
[14] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[15] Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707.
[16] Zhang, D. D.; Duan, L. A.; Li, Y. L.; Zhang, D. Q.; Qiu, Y. J. Mater. Chem. C 2014, 2, 8191.
[17] Wang, H.; Xie, L.; Peng, Q.; Meng, L.; Wang, Y.; Yi, Y.; Wang, P. Adv. Mater. 2014, 26, 5198.
[18] Mei, L.; Hu, J.; Cao, X.; Wang, F.; Zheng, C.; Tao, Y.; Zhang, X.; Huang, W. Chem. Commun. 2015, 51, 13024.
[19] Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S. J. Chem. Sci. 2016, 7, 4264.
[20] Meng, L.; Wang, H.; Wei, X.; Liu, J.; Chen, Y.; Kong, X.; Lv, X.; Wang, P.; Wang, Y. ACS Appl. Mater. Interfaces 2016, 8, 20955.
[21] Wang, K.; Zheng, C. J.; Liu, W.; Liang, K.; Shi, Y. Z.; Tao, S. L.; Lee, C. S.; Ou, X. M.; Zhang, X. H. Adv. Mater. 2017, 29, 1701476.
[22] Lee, J.; Aizawa, N.; Yasuda, T. Chem. Mater. 2017, 29, 8012.
[23] Shi, Y. Z.; Wang, K.; Li, X.; Dai, G. L.; Liu, W.; Ke, K.; Zhang, M.; Tao, S. L.; Zheng, C. J.; Ou, X. M.; Zhang, X. H. Angew. Chem., Int. Ed. 2018, 57, 9480.
[24] Yu, L.; Wu, Z.; Xie, G.; Zeng, W.; Ma, D.; Yang, C. Chem. Sci. 2018, 9, 1385.
[25] Yang, Z.; Mao, Z.; Xu, C.; Chen, X.; Zhao, J.; Yang, Z.; Zhang, Y.; Wu, W.; Jiao, S.; Liu, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2019, 10, 8129.
[26] Zhang, M.; Liu, W.; Zheng, C. J.; Wang, K.; Shi, Y. Z.; Li, X.; Lin, H.; Tao, S. L.; Zhang, X. H. Adv. Sci. 2019, 6, 1801938.
[27] Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P. Y.; Huang, M. J.; Ren-Wu, C. Z.; Yang, C. Y.; Chiu, M. J.; Chu, L. K.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2016, 138, 628.
[28] Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z. Angew. Chem., Int. Ed. 2015, 54, 7181.
[29] Nikolaenko, A. E.; Cass, M.; Bourcet, F.; Mohamad, D.; Roberts, M. Adv. Mater. 2015, 27, 7236.
[30] Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Jalebi, M. A.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. Science 2017, 356, 159.
[31] Wang, Z.; Zheng, C.; Wang, W.; Xu, C.; Ji, B.; Zhang, X. Inorg. Chem. 2016, 55, 2157.
[32] Wang, Z.; Sun, X.; Xu, C.; Ji, B. Front. Chem. 2019, DOI:10. 3389/fchem. 2019.00422
[33] Song, X.; Zhang, D.; Lu, Y.; Yin, C.; Duan, L. Adv. Mater. 2019, 31, 1901923.
[34] Kretzschmar, A.; Patze, C.; Schwaebel, S. T.; Bunz, U. H. F. J. Org. Chem. 2015, 80, 9126.
[35] Zhu, Y.; Zhang, Y.; Yao, B.; Wang, Y.; Zhang, Z.; Zhan, H.; Zhang, B.; Xie, Z.; Wang, Y.; Cheng, Y. Macromolecules 2016, 49, 4373.
[36] Wang, Z.; Cai, J.; Zhang, M.; Zheng, C.; Ji, B. Acta Chim. Sinica 2019, 77, 263. (王志强, 蔡佳林, 张明, 郑才俊, 吉保明, 化学学报, 2019, 77, 263.)
[37] Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.
[38] Huang, T.; Jiang, W.; Duan, L. J. Mater. Chem. C 2018, 6, 5577.
[39] Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. J. Mater. Chem. C 2019, 7, 2172.
[40] Cao, X.; Zhang, D.; Zhang, S.; Tao, Y.; Huang, W. J. Mater. Chem. C 2017, 5, 7699.
[41] Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. J. Mater. Chem. C 2016, 4, 11355.
[42] Cai, X.; Chen, D.; Gao, K.; Gan, L.; Yin, Q.; Qiao, Z.; Chen, Z.; Jiang, X.; Su, S.-J. Adv. Funct. Mater. 2017, 27, 1704927.
[43] Bai, M.-D.; Zhang, M.; Wang, K.; Shi, Y.-Z.; Chen, J.-X.; Lin, H.; Tao, S.-L.; Zheng, C.-J.; Zhang, X.-H. Org. Electron. 2018, 62, 220.
Outlines

/