Communication

One-Pot Synthesis of Monofluoromethoxy Arenes from Aryl Halides, Arylboronic Acids and Arenes

  • Zhao Xiaochun ,
  • Ding Tianqi ,
  • Jiang Lüqi ,
  • Yi Wenbin
Expand
  • Chemical Enginering College, Nanjing University of Science and Technology, Nanjing 210094

Received date: 2019-09-03

  Online published: 2020-01-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21776138, 21476116), the Fundamental Research Funds for the Central Universities (Nos. 30916011102, 30918011314), the Natural Science Foundation of Jiangsu Province (No. BK20180476), the Qing Lan and Six Talent Peaks in Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract

Fluorine-containing compounds have been widely used in the fields of pharmaceuticals, agrochemicals and functional materials, mainly due to the well-known "fluorine effect" of the fluoroalkyl groups on the physical, chemical and biological properties of molecules. Tri- and difluoromethyl ethers play an important role in many medicinally compounds. Among various fluorinated moieties, ORf-containing groups have attracted much more attention very recently owing to the impressive conformational changes and maximal shifts in electron distribution brought by fluorine. The α-fluorine substitution of ethers shortens and strengthens the C-O bond and thus improves the in vivo oxidative stability of the ether moiety of a drug. Over the past few decades, there are some reliable ways on accessing trifluoromethyl ethers and difluomethyl ethers. Considering the importance of synthesis of monofluoromethoxy arenes and the substrate limitation (phenols or alcohols) of current state, a method was developed to access monofluoromethoxy arenes from aryl halides, arylboronic acids and arenes via a one-pot synthesis. Phenols can be prepared by the hydroxylation of aryl halides catalyzed by transition-metal complexes. In this work, a new strategy was envisioned a two-step sequence for the conversion of aryl halides to monofluoromethoxy arenes based on the palladium-catalyzed conversion of aryl phenols and in situ conversion of the resulting phenoxides with monofluoromethylating reagents. The investigation began with optimization of the conversion of 1-chloro-4-methoxy-benzene. The approach was achieved by using Pd2(dba)3 (2 mol%) as the catalyst under an inert atmosphere, di-tert-bu-tyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphane (8 mol%) as the ligand, KOH (1 equiv.) as the nucleophile, and 1,4-dioxane/H2O (V:V=5:3) as the solvent. Further monofluoromethylation used fluoromethyl iodide (2 equiv.) as the monofluoromethylating reagent and CH3CN as the co-solvent. Finally, the desired product was obtained in 82% yield. Therefore, this method was also applied to drugs, for example, Loratadine could be converted to the corresponding product (2o) in 53% yield and Fenofibrate, reacting to form the monofluoromethoxy arenes (2p) in modest yield. One-pot method to access aryl monofluoromethyl ethers from arylboronic acids and arenes were also under consideration and the yields were objective.

Cite this article

Zhao Xiaochun , Ding Tianqi , Jiang Lüqi , Yi Wenbin . One-Pot Synthesis of Monofluoromethoxy Arenes from Aryl Halides, Arylboronic Acids and Arenes[J]. Acta Chimica Sinica, 2019 , 77(12) : 1263 -1267 . DOI: 10.6023/A19090325

References

[1] (a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
(b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(e) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
[2] (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.
(d) Guo, Z.; Xie, M. S.; Han, R. J.; Qu, G. R.; Guo, H. M. Chin. J. Org. Chem. 2018, 38, 112. (郭真, 谢明胜, 韩瑞杰, 渠桂荣, 郭海明, 有机化学, 2018, 38, 112.)
(e) Rong, J.; Ni, C. F.; Wang, Y. Z.; Kuang, C. W.; Gu, Y. C.; Hu, J. B. Acta Chim. Sinica 2017, 75, 105. (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
(f) An, L.; Tong, F. F.; Zhang, X. G. Acta Chim. Sinica 2018, 76, 977. (安伦, 童非非, 张新刚, 化学学报, 2018, 76, 977.)
(g) Ni, C. F.; Zhu, G. L.; Hu, J. B. Acta Chim. Sinica 2015, 73, 90. (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
(h) Zhou, N.; Xu, P.; Li, W.; Cheng, Y. X.; Zhu, C. J. Acta Chim. Sinica 2017, 75, 60. (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.)
[3] (a) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
(b) Jeschke, P.; Baston, E.; Leroux, F. R. Mini-Rev. Med. Chem. 2007, 7, 10274.
(c) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
(d) Tlili, A.; Toulgoat, F.; Billard, T. Angew. Chem., Int. Ed. 2016, 55, 11726.
[4] Wang, C.; Chen, Z.; Wu, W.; Mo, Y. Chem.-Eur. J. 2013, 19, 1436.
[5] Chauret, N.; Guay, D.; Li, C.; Day, S.; Silva, J.; Blouin, M.; Du-charme, Y.; Yergey, J. A.; Nicoli-Griffith, D. A. Bioorg. Med. Chem. Lett. 2002, 12, 2149.
[6] (a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
(b) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
[7] (a) Buzard, D. J.; Schrader T. O.; Zhu, X. W; Juerg, L.; Johnson, B.; Kasem, M.; Kim, S. H.; Kawasaki, A.; Lopez, L.; Moody, J.; Han, S.; Gao, Y. G.; Edwards, J.; Barden, J.; Thatte, J.; Gatlin, J.; Jones, R. M. Bioorg. Med. Chem. Lett. 2015, 25, 659.
(b) Naumiec, G. R.; Jenko, K. J.; Zoghbi, S.; Innis, R. B.; Cai, L. S.; Pike, V. W. J. Med. Chem. 2015, 58, 9722.
[8] (a) Umemoto, T. Chem. Rev. 1996, 96, 1757.
(b) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72, 6905.
(c) Stanek, K.; Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678.
(d) Fantasia, S.; Welch, J. M.; Togni, A. J. Org. Chem. 2010, 75, 1779.
(e) Koller, R. Angew. Chem., Int. Ed. 2009, 48, 4332.
(f) Liang, A.; Han, S. J.; Liu, Z. W.; Wang, L.; Li, J. Y.; Zou, D. P.; Wu, Y. J.; Wu, Y. S. Chem.-Eur. J. 2016, 22, 5102.
(g) Brantley, J. N.; Samant, V.; Toste, F. D. ACS Cent. Sci. 2016, 2, 341.
[9] (a) Alexander, A. K.; Mikhail, V.; Hartmut, G. Tetrahedron Lett. 2008, 49, 449.
(b) Katarzyna, N. L.; Johnny, W. L.; Ngai, M. Y. Tetrahedron 2018, 10, 1016.
(c) Hojczyk, N. K.; Feng, P. G.; Zhan, C. B.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
(d) Cong F.; Wei Y. L.; Tang P. P. Chem. Commun. 2018, 54, 4473.
(e) Zhang, Q. W.; Hartwig, J. F. Chem. Commun. 2018, 54, 10124.
(f) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.
(g) Zhou, M.; Ni, C. F.; Zeng, Y. W.; Hu, J. B. J. Am. Chem. Soc. 2018, 140, 6801.
(h) Sheppard, W. A. J. Org. Chem. 1964, 29, 1.
(i) Manabu, K.; Suzuki, K.; Hiyama, T. Tetrahedron Lett. 1992, 33, 4173.
(j) Liu, J. B.; Chen, C.; Chu, L. L.; Chen, H. Z.; Xu, X. H.; Qing, F. L. Angew. Chem., Int. Ed. 2015, 54, 11839.
(k) Sahoo, B.; Hopkinson, M. N. Angew. Chem. 2018, 130, 8070.
(l) Zheng, W. J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 9645.
(m) Zheng, W. J.; Mo-rales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 13795.
(n) Li, L. C.; Ni, C. F.; Wang, F.; Hu, J. B. Nat. Conmun. 2015, 137, 14496.
[10] (a) Hagooly, Y.; Cohen, O.; Roze, S. Tetrahedron Lett. 2009, 50, 392.
(b) Dolbier, W. R.; Wang, F.; Tang, X.; Thomoson, C. S.; Wang, L. J. Fluorine Chem. 2014, 160, 72.
(c) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792.
(d) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050.
(e) Ni, C.; Hu, J.; Shen, Q. L. Synthesis 2014, 46, 842.
(f) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585.
(g) Jr, W. R. D.; Battiste, M. A. Chem. Rev. 2003, 103, 1071.
(h) Fedorynski, M. Chem. Rev. 2003, 103, 1099.
(i) Zhang, C. P.; Chen, Q. Y.; Guo, Y.; Xiao, J. C.; Gu, Y. C. Coord. Chem. Rev. 2014, 261, 28.
[11] (a) Zhang, W.; Zhu, L. G.; Hu, J. Tetrahedron 2007, 63, 10569.
(b) Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557.
(c) Nomura, Y.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 1885.
(d) Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J. B. Chem. Sci. 2014, 5, 117.
(e) Liu, Y.; Lu, L.; Shen, Q. L. Angew. Chem., Int. Ed. 2017, 56, 9930.
[12] (a) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
(b) Xia, S. H.; Gan, L.; Wang, K. L.; Li, Z.; Ma, D. W. J. Am. Chem. Soc. 2016, 138, 13493.
[13] Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 2092.
[14] Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.
[15] Hartwig, J. F.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 390.
[16] Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
Outlines

/