Article

Preparation of AIE Polymer Dots (Pdots) Based on Poly(N-vinyl-2-pyrrolidone)-Eu(III) Complex and Dual-color Live Cell Imaging

  • Guan Xiaolin ,
  • Li Zhifei ,
  • Wang Lin ,
  • Liu Meina ,
  • Wang Kailong ,
  • Yang Xueqin ,
  • Li Yali ,
  • Hu Lili ,
  • Zhao Xiaolong ,
  • Lai Shoujun ,
  • Lei Ziqiang
Expand
  • a Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;
    b School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730000, China

Received date: 2019-09-27

  Online published: 2020-01-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21965032, 21761032, 51363019) and the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund (KF-18-05).

Abstract

In recent years, polymer dots (Pdots) have been developed as an excellent organic fluorescent nanoparticles due to its excellent optical properties, diverse structures, easy surface modification and good biocompatibility. So, they have important application potential in biological imaging, sensing and detection, drug delivery and therapeutic diagnosis. However, the fluorescence quenching of semiconducting Pdots with large conjugated structure due to aggregation-caused quenching (ACQ) effect limits its applications for bioimaging in aggregated states. The ACQ phenomenon of Pdots could been eliminated by introducing aggregation-induced emission (AIE)-active molecules in Pdots. In this paper, a kind of responsive AIE-active Pdots, which were composed of tetraphenylethylene (TPE) with blue fluorescent light emission and poly(N-vinyl-2-pyrrolidone)-Eu(III) complex (PVP-Eu(III)) with red fluorescent light emission, were constructed. Firstly, a TPE derivative initiator (TPE-tetraAZO) containing four arms was synthesized by using 4,4'-azobis-(4-cyanovaleric acid) to modify TPE, and a multi-stimuli-responsive amphiphilic polymer of tetraphenylethene-graft-poly(N-vinyl-2-pyrrolidone) (TPE-tetraPVP) was then successfully synthesized by using TPE-tetraAZO as initiator. Finally, the complex TPE-tetraPVP-Eu(III) with AIE characteristic and dual fluorescence was obtained through the coordination between TPE-tetraPVP and rare earth element Eu(III). The amphiphilic 4-arm star polymer TPE-tetraPVP-Eu(III) formed Pdots consisted of hydrophobic AIEgens TPE core and hydrophilic PVP shell by a self-assembling process. The morphology and particle size of Pdots were investigated by transmission electron microscope (TEM). Results showed that Pdots was a relatively uniform diameter around 20 nm and exhibited regular sphere morphology. The results of fluorescence experiments showed that TPE-tetraPVP-Eu(III) Pdots had two emission bands centered at about 435 (blue) and 615 nm (red) with a wavelength difference of 180 nm, which were obtained under optimum excitation at 360 and 395 nm, respectively. Among them, the blue emission showed typical AIE property. Moreover, the lower critical solution temperature (LCST) of TPE-tetraPVP-Eu(III) in aqueous solution was about 37℃, which was close to normal body temperature. Meanwhile, at different temperatures from 10 to 60℃, photoluminescence (PL) intensities of TPE-tetraPVP-Eu(III) Pdots firstly decreased with increasing temperature from 10 to 36℃, and then increased with increasing temperature from 37 to 60℃. It was interesting that the fluorescent response of Pdots could be caused by the phase transfer of PVP. Besides, the PL intensity of Pdots in aqueous solution changed at different pH. Therefore, TPE-tetraPVP-Eu(III) Pdots might be used as multi-functional and smart fluorescent sensors. Furthermore, the results of cellular imaging indicated the efficient cellular uptake and low cytotoxicity of Pdots in HeLa, HepG2 and A549 cells. And, the photoswitchable dual-emission could be easily realized in three cells by simply tuning the excitation wavelength. Thus, the non-conjugated Pdots is an ideal dual-color live cell imaging probe.

Cite this article

Guan Xiaolin , Li Zhifei , Wang Lin , Liu Meina , Wang Kailong , Yang Xueqin , Li Yali , Hu Lili , Zhao Xiaolong , Lai Shoujun , Lei Ziqiang . Preparation of AIE Polymer Dots (Pdots) Based on Poly(N-vinyl-2-pyrrolidone)-Eu(III) Complex and Dual-color Live Cell Imaging[J]. Acta Chimica Sinica, 2019 , 77(12) : 1268 -1278 . DOI: 10.6023/A19090349

References

[1] Liu, Y. Y.; Stehlik, J.; Eichler, C.; Gullans, M. J.; Taylor, J. M.; Petta, J. R. Science 2015, 347, 285.
[2] Pietryga, J. M.; Park, Y. S.; Lim, J. H.; Fider, A. F.; Bae, W. K.; Brovelil, S. G. Chem. Rev. 2016, 116, 10513.
[3] Sun, Q. H.; Li, Z.; Ma, N. Acta Chim. Sinica. 2018, 76, 43(in Chinese). (孙权洪, 李智, 马楠, 化学学报, 2018, 76, 43.)
[4] Xi, Z. F.; Yuan, F. L.; Wang, Z. F.; Li, S. H.; Fan, L. Z. Acta Chim. Sinica 2018, 76, 460(in Chinese). (郗梓帆, 袁方龙, 王子飞, 李淑花, 范楼珍, 化学学报, 2018, 76, 460.)
[5] Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Acta Chim. Sinica 2018, 76, 393(in Chinese). (徐毅, 赵彦, 张叶俊, 崔之芬, 王丽华, 樊春海, 高基民, 孙艳红, 化学学报, 2018, 76, 393.)
[6] Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chinese J. Chem. 2017, 35, 73.
[7] Huang, L.; Li, Z. C.; Huang, S. Q.; Peter, R.; Li, L. Acta Chim. Sinica 2017, 75, 300(in Chinese). (黄璐, 李志春, 黄寿强, PeterReiss, 李良, 化学学报, 2017, 75, 300.)
[8] Wegner, K. D.; Hildebrandt, N. Chem. Soc. Rev. 2015, 44, 4792.
[9] Song, Y. C.; Liu, J. X.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607(in Chinese). (宋延超, 刘俊秀, 史文, 马会民, 化学学报, 2013, 71, 1607.)
[10] Cai, P.; Jia, Y.; Feng, X.; Li, J.; Li, J. B. Chinese J. Chem. 2017, 35, 881.
[11] Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc. 2015, 137, 10420.
[12] Xiong, L. Q.; Cao, F. W.; Cao, X. M.; Guo, Y. X.; Zhang, Y. M.; Cai, X. Bioconjugate Chem. 2015, 5, 817.
[13] Yu, J. B.; Rong, Y.; Kuo, C. T.; Hua, X.; Chiu, D. T. Anal. Chem. 2017, 1, 42.
[14] Huang, Z. F.; Zhang, X. Q.; Zhang, X. Y.; Fu, C. K.; Wang, K.; Yuan, J. Y.; Tao, L.; Wei, Y. Polym. Chem. 2015, 6, 607.
[15] Birks, J. B. Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.
[16] Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Chen, L.; Chen, H. Y.; Qiu, C. F.; Kwok, S. K.; Zhan, X. W.; Liu, Y.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.
[17] Mei, J.; Leung, L. C.; Kwok, T. K.; Lam, W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[18] Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74, 917(in Chinese). (纪光, 闫路林, 王慧, 马莲, 徐斌, 田文晶, 化学学报, 2016, 74, 917.)
[19] Wu, W. B.; Mao, D.; Hu, F.; Xu, S. D.; Chao, C.; Zhang, X. M.; Yuan, Y. Y.; Ding, D.; Kong, D. L.; Liu, B. Adv. Mater. 2017, 29, 1700548.
[20] Lu, H. G.; Su, F. Y.; Mei, Q.; Tian, Y. Q.; Tian, W. J.; Johnson, R. H.; Meldrum, D. R. J. Mater. Chem. 2012, 22, 9890.
[21] Guan, X. L.; Meng, L.; Jin, Q. J.; Lu, B. C.; Chen, Y. B.; Li, Z. F.; Lai, S. J.; Lei, Z. Q. Macromol. Mater. Eng. 2018, 303, 1700553.
[22] Li, K.; Qin, W.; Ding, D.; Tomczak, N. D.; Geng, J. L.; Liu, R. G.; Liu, J. Z.; Zhang, X. H.; Liu, H. G.; Liu, B.; Tang, B. Z. Sci. Rep. 2013, 3, 1150.
[23] Zhang, Y.; Chen, Y. J.; Li, X.; Zhang, J. Z.; Chen, J. L.; Xu, B.; Fu, X. Q.; Tian, W. J. Polym. Chem. 2014, 5, 3824.
[24] Zhang, X.; Liu, M. Y.; Yang, B.; Zhang, X. Y.; Chi, Z.; Chi, Z. G.; Liu, S. W.; Xu, J.; Wei, Y. Polym. Chem. 2013, 4, 5060.
[25] Liu, Y. Z.; Mao, L. C.; Yang, S. J.; Liu, M.; Huang, H. Y.; Wen, Y. Q.; Deng, F. J.; Li, Y. X.; Zhang, X. Y.; WEI, Y. Dyes Pigments 2018, 158, 79.
[26] Wu, J. T.; Zhang, J.; Deng, C.; Meng, F.; Cheng, R.; Zhong, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 3985.
[27] Zhao, Y.; Shi, C.; Yang, X. D.; Shen, B.; Sun, Y. Q.; Chen, Y.; Xu, X. W.; Sun, H. C.; Yu, K.; Yang, B.; Lin, Q. ACS Nano 2016, 10, 5856.
[28] Guan, X. L.; Zhang, D. H.; Meng, L.; Zhang, Y.; Jia, T. M.; Wei, Q. B.; Lu, D. D.; Ma, H. C. Ind. Eng. Chem. Res. 2017, 56, 680.
[29] Sabbatini, L.; Malitesta, C.; De Giglio, E. J. Electron Spectrosc. Relat. Phenom. 1999, 100, 35.
[30] Wang, Y.; Jiang, H. L. Mater. Lett. 2007, 61, 2779.
[31] Zhong, W. B.; Zeng, X. Y.; Chen, J.; Hong, Y. X.; Xiao, L. X.; Zhang, P. S. Polym. Chem. 2017, 8, 4849.
[32] Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Nano Lett. 2006, 6, 662.
[33] Zhou, P.; Li, G. Y.; Shao, Z. Z.; Pan, X. Y.; Yu, T. Y. J. Phys. Chem. B 2001, 105, 12469.
[34] Guan, X. L.; Zhang, D. H.; Jia, T. M.; Zhang, Y.; Meng, L.; Jin, Q. J.; Ma, H. C.; Lu, D. D.; Lei, Z. Q. RSC Adv. 2016, 6, 107622.
[35] Kato, T.; Kawaguchi, A.; Nagata, K.; Hatanaka, k. Biochem. Biophys. Res. Commun. 2010, 394, 200.
Outlines

/