Article

Molecular Dynamics Simulation of “Quasi-Gemini” Anionic Surfactant at the Decane/Water Interface

  • Gao Simeng ,
  • Xia Kun ,
  • Kang Zhihong ,
  • Nai Yongning ,
  • Yuan Ruixia ,
  • Niu Ruixia
Expand
  • College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318

Received date: 2019-10-12

  Online published: 2020-01-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21606042), Northeast Petroleum University Cultivation Fund (No. 2017PYQZL-08) and Northeast Petroleum University Talent Engineering Research Start Fund (No. RC201724).

Abstract

Anionic surfactants play a key role in many industrial fields such as drug delivery, detergent, oil displacement and food processing because of their unique amphiphilic properties. The structure of surfactant in oil-water system has a great influence on the interfacial behavior. It is of great significance to study the structure and interfacial properties of surfactants. In this paper, the all-atomic molecular dynamics method was used to study the aggregation behavior of nonylphenol-substituted series of alkyl sulfonate surfactants (Cn-NPAS) at the decane/water interface. The effects of different sulfoalkyl chain lengths on the interfacial properties of nonylphenol-substituted alkyl sulfonate surfactants were investigated by analyzing the interface thickness, interface formation energy, interfacial tension, the radial distribution function and coordination number. Simulation results have shown that the interfacial thickness increases at first and then decreases as the length of sulfoalkyl chain increases. The same trend was found in the results of the interface formation energy (IFE). The absolute value of IFE follows the order of C12-NPAS > C14-NPAS > C10-NPAS > C16-NPAS > C8-NPAS, indicating that the C12-NPAS is the most stable system in terms of energy which should be attribute to the stronger aggregation ability. Moreover, it is observed that the trend of interfacial tension is in agreement with that of interface formation energy and the interface thickness. Surfactant C12-NPAS induces the minimum interfacial tension. The calculation results are consistent with the experimental data. Furthermore, the radial distribution function and the coordination number of water around the surfactant headgroup were obtained for evaluating the interaction strength between the hydrophilic headgroup and water molecules. The results are well in accordance with the trend of the interface formation energy and interfacial tension. This indicates that the length of alkyl tail affect the interaction between hydrophilic headgroup and water indirectly. Simulation results suggest that the length of alkyl tail plays a dominant role in the interfacial behaviors. We expect that the results of this study could be valuable for the understanding of mechanism and the design of high performance surfactants.

Cite this article

Gao Simeng , Xia Kun , Kang Zhihong , Nai Yongning , Yuan Ruixia , Niu Ruixia . Molecular Dynamics Simulation of “Quasi-Gemini” Anionic Surfactant at the Decane/Water Interface[J]. Acta Chimica Sinica, 2020 , 78(2) : 155 -160 . DOI: 10.6023/A19100364

References

[1] He, X. B.; Guvench, O.; Mackerell Jr., A. D.; Klein, M. L. J. Phys. Chem. B 2010, 114, 9787.
[2] Yu, Y. X.; Zhao, J.; Guvench, O.; Bayly, A. E. Chin. J. Chem. Eng. 2008, 16, 517.
[3] Zhao, W. W.; Wang, Y. L. Acta Chim. Sinica 2019, 77, 717(in Chinese). (赵微微, 王毅琳, 化学学报, 2019, 77, 717.)
[4] Yan, H.; Guo, X. L.; Liu, C. B.; Yuan, S. L. Langmuir 2011, 27, 5762.
[5] Lin, C.; Pan, R. M.; Xing, P. Chin. J. Org. Chem. 2018, 38, 3260(in Chinese). (林超, 潘仁明, 邢萍, 有机化学, 2018, 38, 3260.)
[6] Zhao, Y.; Wang, C.; Chow, A. H.; Ren, K.; Gong, T.; Zhang, Z. R.; Zheng, Y. Int. J. Pharm. B 2010, 383, 170.
[7] Liao, G. Z.; Wang, Q.; Wang, H. Z.; Liu, W. D.; Wang, Z. M. Acta Petrolei Sinica 2017, 38, 196(in Chinese). (廖广志, 王强, 王红庄, 刘卫东, 王正茂, 石油学报, 2017, 38, 196.)
[8] Yu, T.; Liu, H. J.; Ding, W. Chin. J. Appl. Chem. 2008, 25, 1107(in Chinese). (于涛, 刘红娟, 丁伟, 应用化学, 2008, 25, 1107.)
[9] Chen, X. M.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.
[10] Li, H. F.; Qiao, F. L.; Fan, Y. X.; Wang, Y. L. Acta Chim. Sinica 2018, 76, 564(in Chinese). (李浩飞, 乔富林, 范雅珣, 王毅琳, 化学学报, 2018, 76, 564.)
[11] Li, M.; Zhang, C.; Yang, X. Chin. J. Chem. 2017, 35, 1706.
[12] Li, Z. Q.; Guo, X. L.; Wang, H. Y.; Li, Q. H.; Yuan, S. L. Acta Phys.-Chim. Sin. 2009, 25, 6(in Chinese). (李振泉, 郭新利, 王红艳, 李青华, 苑世领, 物理化学学报, 2009, 25, 6.)
[13] Jang, S. S.; Lin, S. T.; Maiti, P. K.; Blanco, M.; Goddard, W. A.; Shuler, P. J. Phys. Chem. B 2004, 108, 12130.
[14] Sun, H. Q.; Xiao, H. Y.; Liu, X. H. Sci. Chin. Chem. 2011, 54, 1078(in Chinese). (孙唤泉, 肖红艳, 刘新厚, 中国科学:化学, 2011, 54, 1078.)
[15] Shi, J.; Lv, K.; Yuan, S. L. J. Shandong Univ. (Engineering Science) 2012, 42, 77(in Chinese). (石静, 吕凯, 苑世领, 山东大学学报:工学版, 2012, 42, 77.)
[16] Wang, Y. F.; Yu, W. Z.; Hu, S. Q. J. Chin. Univ. Petro. 2011, 35, 153(in Chinese). (王业飞, 于维钊, 胡松青, 中国石油大学学报, 2011, 35, 153.)
[17] Niu, R. X.; Wang, D. Q.; Wang, J. L.; Wang, C.; Song, H. J. Chem. Ind. Eng. 2016, 67, 2944(in Chinese). (牛瑞霞, 王大强, 王敬玲, 王超, 宋华, 化工学报, 2016, 67, 2944.)
[18] Tan, J. S.; Zhang, L.; Lim, F. C.; Cheong, D. W. Langmuir 2017, 33, 4461.
[19] Martínez, L.; Andrade, R.; Birgin, E. G. J. Comput. Chem. 2009, 30, 2157.
[20] Lundborg, M.; Lindahl, E. J. Phys. Chem. B 2014, 119, 810.
[21] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comp. Chem. 2004, 25, 1157.
[22] Sastry, N. V.; Valand, M. K. J. Chem. Thermodyn. 1998, 30, 929.
[23] Pai, Y. H.; Chen, L. J. J. Chem. Eng. Data 1998, 43, 665.
[24] Hou, M. D.; Li, H. P.; Hu, Z. Z.; Song, H. W. China Surfactant Detergent & Cosmetics 2018, 48, 243(in Chinese). (候孟蝶, 李惠萍, 胡子昭, 宋宏伟, 日用化学工业, 2018, 48, 243.)
[25] Hu, X. Y.; Song, X. W.; Li, Q. W.; He, X. J.; Li, Y. Acta Chim. Sinica 2009, 67, 1691(in Chinese). (胡晓莹, 宋新旺, 李全伟, 何秀娟, 李英, 化学学报, 2009, 67, 1691.)
[26] Olayiwola, S. O.; Dejam, M. Fuel 2019, 241, 1045.
[27] Jiang, R. J.; Luo, J. H.; Bai, R. B.; Jiang, B.; Zhou, G. Chem. J. Chin. Univ. 2017, 38, 1804(in Chinese). (江蓉君, 罗健辉, 白瑞兵, 江波, 周歌, 高等学校化学学报, 2017, 38, 1804.)
[28] Zeppieri, S.; Rodriguez, J.; López, R. A. J. Chem. Eng. Data 2001, 46, 1086.
[29] Wang, J.; Wang, J. X.; Zeng, F. G.; Wu, X. L. Acta Chim. Sinica 2010, 68, 1653(in Chinese). (王进, 王军霞, 曾凡桂, 吴秀玲, 化学学报, 2010, 68, 1653.)
[30] Liu, M. T.; Pu, M. F.; Ma, H. W. Chem. J. Chin. Univ. 2012, 33, 1319(in Chinese). (刘梅堂, 浦敏锋, 马鸿文, 高等学校化学学报, 2012, 33, 1319.)
[31] Liu, Z. Y.; Liao, Q.; Jin, Z. Q.; Zhang, L.; Zhang, L. Acta Phys.-Chim. Sinica 2016, 32, 1168(in Chinese). (刘子瑜, 廖琦, 靳志强, 张磊, 张路, 物理化学学报, 2016, 32, 1168.)
Outlines

/