Article

Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions

  • Sun Yanhui ,
  • Qi Youxiao ,
  • Shen You ,
  • Jing Cuijie ,
  • Chen Xiaoxiao ,
  • Wang Xinxing
Expand
  • a College of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042;
    b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042

Received date: 2019-09-12

  Online published: 2020-01-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21804076), the Natural Science Foundation of Shandong Province (No. ZR2017BB040), the Applied Basic Research Program of Qingdao (No. 17-1-1-65-jch) and the Open Fund of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology (No. SATM201708).

Abstract

Metal organic frameworks (MOFs) have unique advantages in adsorption and preconcentration of heavy metal ions due to their structure and composition characteristics, which make them show great potential in optical sensing of heavy metal ions. However, their applications in the field of electrochemical sensing is greatly limited because of their poor conductivity. In this work, a functionalized MOF composite, thermally reduced graphene oxide-Au nanoparticles-zeolitic imidazolate skeleton material (RGO-Au-ZIF-8), was fabricated. It exhibits much improved electrochemical properties compared with the pristine MOF. A novel electrochemical sensing platform was constructed based on it, and simultaneous detection of lead ions (Pb2+) and copper ions (Cu2+) in aqueous solution was realized. Specifically, the Au-ZIF-8 was prepared by adding polyvinylpyrrolidone (PVP)-stabilized Au nanoparticles (AuNPs) to the reaction solution of ZIF-8. The modification of AuNPs effectively improved the conductivity of the material. After compounding with RGO, the RGO-Au-ZIF-8 composite was prepared. The RGO was used as scaffold for the Au-ZIF-8 in the composite to increase the effective surface area of electrode and improve conductivity. The morphology and structure of the prepared materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy (UV-Vis). The electrochemical properties of the modified electrodes were characterized by various electrochemical techniques. The experimental parameters, such as pH value of working solution, accumulation potential, accumulation time and composition ratio of Au-ZIF-8 to RGO were optimized. Under the optimized conditions, simultaneous and sensitive detection of Pb2+ and Cu2+ on the prepared electrochemical sensor was realized with the detection limits of 2.6×10-9 and 7.8×10-9 mol·L-1 for Pb2+ and Cu2+, respectively (S/N=3). The interference test showed that the electrochemical sensor has good selectivity for the detection of Pb2+ and Cu2+, and further electrochemical studies revealed that the designed sensor has excellent reproducibility and good stability. The result of recovery test indicated that the prepared electrochemical sensor has great potential in Pb2+ and Cu2+ detection in real water samples. This work provides a new platform for simultaneous, rapid and sensitive detection of heavy metal ions, and greatly expands the electrochemical applications of MOF materials.

Cite this article

Sun Yanhui , Qi Youxiao , Shen You , Jing Cuijie , Chen Xiaoxiao , Wang Xinxing . Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions[J]. Acta Chimica Sinica, 2020 , 78(2) : 147 -154 . DOI: 10.6023/A19090338

References

[1] Awual, M. R.; Hasan, M. M.; Shahat, A. Sens. Actuators, B 2014, 203, 854.
[2] Rodriguez Martin, J. A.; De Arana, C.; Ramos-Miras, J. J.; Gil, C.; Boluda, R. Environ. Pollut. 2015, 196, 156.
[3] Saha, D.; Barakat, S.; Bramer, S. V.; Nelson, K. A.; Hensley, D. K.; Chen, J. H. ACS Appl. Mater. Interfaces 2016, 8, 34132.
[4] Mo, J.; Zhou, L.; Li, X.; Li, Q.; Wang, L.; Wang, Z. Microchem. J. 2017, 130, 353.
[5] Choi, H. W.; Lee, K. H.; Hur, N. H.; Lim, H. B. Anal. Chim. Acta 2014, 847, 10.
[6] Zeinu, K. M.; Hou, H. J.; Liu, B. C.; Yuan, X. Q.; Long, H.; Zhu, X. L.; Hu, J. P.; Yang, J. K.; Liang, S.; Wu, X. J. J. Mater. Chem. A 2016, 4, 13967.
[7] Zhang, Z. H.; Ji, H. F.; Song, Y. P.; Zhang, S.; Wang, M. H.; Jia, C. C.; Tian, J. Y.; He, L. H.; Zhang, X. J.; Liu, C. S. Biosens. Bioelectron. 2017, 94, 358.
[8] Cui, L.; Wu, J.; Li, J.; Ju, H. X. Anal. Chem. 2015, 87, 10635.
[9] Li, L. B.; Liu, D.; Shi, A. P.; You, T. Y. Sens. Actuators, B 2018, 255, 1762.
[10] Zhou, S. F.; Wang, J. J.; Gan, L.; Han, X. J.; Fan, H. L.; Mei, L. Y.; Huang, J.; Liu, Y. Q. J. Alloy. Compd. 2017, 721, 492.
[11] Lv, H. Y.; Teng, Z. Y.; Wang, S. C.; Feng, K.; Wang, X. L.; Wang, C. Y.; Wang, G. X. Sens. Actuators, B 2018, 256, 98.
[12] Zhu, G. F.; Chen, L. T.; Cheng, G. H.; Zhao, J.; Yang, C.; Zhang, Y. Z.; Wang, X.; Fan, J. Acta Chim. Sinica 2019, 77, 434. (朱桂芬, 陈乐田, 程国浩, 赵娟, 杨灿, 张耀宗, 王醒, 樊静, 化学学报, 2019, 77, 434.)
[13] Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 153. (马亚丽, 刘茹雪, 孟双艳, 牛力同, 杨志旺, 雷自强, 化学学报, 2019, 77, 153.)
[14] Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841. (张贺, 李国梁, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[15] Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.
[16] Sun, D. R.; Li, Z. H. Chin. J. Chem. 2017, 35, 135.
[17] Lu, M. X.; Deng, Y. J.; Luo, Y.; Lv, J. P.; Li, T. B.; Xu, J.; Chen, S. W.; Wang, J. Y. Anal. Chem. 2019, 91, 888.
[18] Guo, H. L.; Zhu, G. S.; Hewitt, L. J.; Qiu, S. L. J. Am. Chem. Soc. 2009, 131, 1646.
[19] Banerjee, R.; Britt, H. F. D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875.
[20] Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Angew. Chem., Int. Ed. 2010, 49, 548.
[21] Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A. A.; Bats, N. J. Am. Chem. Soc. 2010, 132, 2365.
[22] Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22. (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
[23] Qiu, S. L.; Zhu, G. S. Coord. Chem. Rev. 2009, 253, 2891.
[24] Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339. (杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[25] Gao, S. S.; Xu, C. Y.; Yalikun, N.; Mamat, X.; Li, Y. T.; Wagberg, T.; Hu, X.; Liu, J.; Luo, J.; Hu, G. Z. J. Electrochem. Soc. 2017, 164, H967.
[26] Xiao, L. L.; Xu, H. B.; Zhou, S. H.; Song, T.; Wang, H. H.; Li, S. Z.; Gan, W.; Yuan, Q. H. Electrochim. Acta 2014, 143, 143.
[27] Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Nano Lett. 2011, 11, 3394.
[28] Zhang, Z. X.; Luan, W. X.; Zhang, C. Y.; Liu, Y. J. Acta Chim. Sinica 2017, 75, 403. (张召香, 栾文秀, 张超英, 刘玉洁, 化学学报, 2017, 75, 403.)
[29] Zhu, X. L.; Liu, B. C.; Hou, H. J.; Huang, Z. Y.; Zeinu, K. M.; Huang, L.; Yuan, X. Q.; Guo, D. B.; Hu, J. P.; Yang, J. K. Electrochim. Acta 2017, 248, 46.
[30] Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X. Y.; Perman, J. A.; Ma, S. Q. J. J. Mater. Chem. A 2017, 5, 8385.
[31] Wei, Y.; Gao, C.; Meng, F. L.; Li, H. H.; Wang, L.; Liu, J. H.; Huang, X. J. J. Phys. Chem. C 2011, 116, 1034.
[32] Guo, Z.; Li, D. D.; Luo, X. K.; Li, Y. H.; Zhao, Q. N.; Li, M. M.; Zhao, Y. T.; Sun, T. S.; Ma, C. J. Colloid Interface Sci. 2017, 490, 11.
[33] Yu, L. Y.; Zhang, Q.; Yang, B. R.; Xu, Q.; Xu, Q.; Hu, X. Y. Sens. Actuators, B 2018, 259, 540.
[34] Frens, G. Nat. Phys. Sci. 1973, 241, 20.
[35] Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; Duchene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.
Outlines

/